ESP32

Technical Reference Manual

\ Version 5.0
m\ Espressif Systems
Copyright © 2023

www.espressif.com

About This Manual

The ESP32 Technical Reference Manual is addressed to application developers. The manual provides detailed
and complete information on how to use the ESP32 memory and peripherals.

For pin definition, electrical characteristics, and package information, please see £ESP32 Datasheet.

Document Updates
Please always refer to the latest version at https://www.espressif.com/en/support/download/documents.

Revision History
For any changes to this document over time, please refer to the last page.

Documentation Change Notification
Espressif provides email notifications to keep customers updated on changes to technical documentation. Please
subscribe at www.espressif.com/en/subscribe.

Certification
Download certificates for Espressif products from www.espressif.com/en/certificates.

http://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/support/download/documents
http://espressif.com/en/subscribe
http://espressif.com/en/certificates

Contents

Contents

1.1
1.2
1.3

2.1
2.2
2.3

2.4

3.1

3.2

System and Memory
Introduction
Features
Functional Description
1.3.1 Address Mapping
1.3.2 Embedded Memory
1.3.2.1 Internal ROM O
1.3.2.2 Internal ROM 1
1.3.2.3 Internal SRAM 0
1.3.2.4 Internal SRAM 1
1.3.2.5 Internal SRAM 2
1.3.2.6 DMA
1.3.2.7 RTC FAST Memory
1.3.2.8 RTC SLOW Memory
1.3.3 External Memory
1.3.4 Cache
1.3.5 Peripherals
1.3.5.1 Asymmetric PID Controller Peripheral
1.3.5.2 Non-Contiguous Peripheral Memory Ranges
1.3.6.3 Memory Speed

Interrupt Matrix (INTERRUPT)

Overview

Features

Functional Description

2.3.1 Peripheral Interrupt Source

2.3.2 CPU Interrupt

2.3.3 Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU
2.3.4 CPU NMI Interrupt Mask

2.3.5 Query Current Interrupt Status of Peripheral Interrupt Source
Registers

Reset and Clock

System Reset

3.1.1 Introduction

3.1.2 Reset Source

System Clock

3.2.1 Introduction

3.2.2 Clock Source

3.2.3 CPU Clock

3.2.4 Peripheral Clock
3.241 APB_CLK

Espressif Systems 3

Submit Documentation Feedback

24
24
24
26
26
26
27
27
27
28
28
29
29
29
29
30
31
32
32
33

34
34
34
34
34
37
37
38
38
38

39
39
39
39
40
40
41
41
42
42

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

3.2.4.2 REF_TICK 42

3.24.3 LEDC_SCLK Source 43

3.2.4.4 APLL_SCLK Source 43

3.245 PLL_F160M_CLK Source 43

3.2.4.6 Clock Source Considerations 43

3.2.5 Wi-Fi BT Clock 43

3.2.6 RTC Clock 44

3.2.7 Audio PLL 44

3.3 Register Summary 44
3.4 Registers 45
4 10_MUX and GPIO Matrix (GPIO, 10_MUX) 48
4.1 Overview 48
4.2 Peripheral Input via GPIO Matrix 49
4.21 Summary 49

4.2.2 Functional Description 49

4.2.3 Simple GPIO Input 50

4.3 Peripheral Output via GPIO Matrix 50
4.3.1 Summary 50

4.3.2 Functional Description 51

4.3.3 Simple GPIO Output 52

4.4 Direct I/0O via IO_MUX 52
4.41 Summary 52

4.4.2 Functional Description 52

4.5 RTC IO_MUX for Low Power and Analog I/O 52
451 Summary 52

4.5.2 Analog Function Description 52

4.6 Light-sleep Mode Pin Functions 53
4.7 Pad Hold Feature 53
4.8 1/O Pad Power Supplies 53
4.8.1 VDD_SDIO Power Domain 55

4.9 Peripheral Signal List 55
410 10_MUX Pad List 60
411 RTC_MUX Pin List 61
412 Register Summary 61
4.12.1 GPIO Matrix Register Summary 61
4.12.2 10 MUX Register Summary 63
4.12.3 RTC IO MUX Register Summary 64

4.13 Reqisters 65
4.13.1 GPIO Matrix Registers 65
4.18.2 10 MUX Registers 74
4.13.3 RTC IO MUX Registers 76

5 DPort Registers 92
5.1 Introduction 92
5.2 Features 92
Espressif Systems 4 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

5.3 Functional Description
5.3.1 System and Memory Register
5.3.2 Reset and Clock Registers
5.3.83 Interrupt Matrix Register
5.3.4 DMA Registers
5.3.5 MPU/MMU Registers
5.3.6 APP_CPU Controller Registers
5.3.7 Peripheral Clock Gating and Reset
5.4 Register Summary
5.5 Registers
6 DMA Controller (DMA)
6.1 Overview
6.2 Features
6.3 Functional Description
6.3.1 DMA Engine Architecture
6.3.2 Linked List
6.4 UART DMA (UDMA)
6.5 SPIDMA Interface
6.6 125 DMA Interface
7 SPI Controller (SPI)
71 Overview
7.2 SPI Features
7.3 GP-SPI
7.3.1 GP-SPI Four-line Full-duplex Communication
7.3.2 GP-SPI Four-line Half-duplex Communication
7.3.3 GP-SPI Three-line Half-duplex Communication
7.3.4 GP-SPI Data Buffer
7.4 GP-SPI Clock Control
7.4.1 GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA)
7.4.2 GP-SPI Timing
7.5 Parallel QSPI
7.5.1 Communication Format of Parallel QSPI
7.6 GP-SPI Interrupt Hardware
7.6.1 SPI Interrupts
7.6.2 DMA Interrupts
7.7 Register Summary
7.8 Reqgisters
8 SDIO Slave Controller
8.1 Overview
8.2 Features
8.3 Functional Description
8.3.1 SDIO Slave Block Diagram
8.3.2 Sending and Receiving Data on SDIO Bus
Espressif Systems 5

Submit Documentation Feedback

92
92
92
92
92
92
93
93
94
101

120
120
120
120
120
121
121
123
124

125
125
126
126
127
127
128
128
129
129
130
131
131
132
132
132
133
136

159
159
159
159
159
160

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

8.4
8.5
8.6
8.7

9.1
9.2
9.3
9.4

9.5
9.6

9.7
9.8
9.9

9.10
9.11
9.12
9.13

10

10.1
10.2

8.3.3 Register Access
8.3.4 DMA
8.3.5 Packet-Sending/-Receiving Procedure

8.3.5.1 Sending Packets to SDIO Host
8.3.5.2 Receiving Packets from SDIO Host

8.3.6 SDIO Bus Timing

8.3.7 Interrupt
8.3.7.1 Host Interrupt
8.3.7.2 Slave Interrupt

Register Summary

SLC Registers

SLC Host Registers

HINF Registers

SD/MMC Host Controller

Overview
Features
SD/MMC External Interface Signals
Functional Description
9.4.1 SD/MMC Host Controller Architecture
9411 BIU
9412 ClU
9.4.2 Command Path
9.4.3 Data Path
9.4.3.1 Data Transmit Operation
9.4.3.2 Data Receive Operation
Software Restrictions for Proper CIU Operation
RAM for Receiving and Sending Data
9.6.1 Transmit RAM Module
9.6.2 Receive RAM Module
Descriptor Chain
The Structure of a Linked List
Initialization
9.9.1 DMAC Initialization
9.9.2 DMAC Transmission Initialization
9.9.3 DMAC Reception Initialization
Clock Phase Selection
Interrupt
Register Summary
Registers

Ethernet Media Access Controller (MAC)

Overview
EMAC_CORE
10.2.1 Transmit Operation
10.2.1.1 Transmit Flow Control

Espressif Systems

Submit Documentation Feedback

160
160
161
162
163
164
165
165
165
166
168
176
190

191
191
191
191
192
192
193
193
193
194
194
195
195
196
196
196
197
197
199
199
199
200
201
201
201
202

221
221
223
223
223

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

10.3
10.4

10.5
10.6

10.7
10.8

10.9
10.10

11

111
1.2
11.3

11.4
11.5

10.2.1.2 Retransmission During a Collision
10.2.2 Receive Operation
10.2.2.1 Reception Protocol
10.2.2.2 Receive Frame Controller
10.2.2.3 Receive Flow Control
10.2.2.4 Reception of Multiple Frames
10.2.2.5 Error Handling
10.2.2.6 Receive Status Word
MAC Interrupt Controller
MAC Address Filtering
10.4.1 Unicast Destination Address Filtering
10.4.2 Multicast Destination Address Filtering
10.4.3 Broadcast Address Filtering
10.4.4 Unicast Source Address Filtering
10.4.5 Inverse Filtering Operation
10.4.6 Good Transmitted Frames and Received Frames
EMAC_MTL (MAC Transaction Layer)
PHY Interface
10.6.1 MIl (Media Independent Interface)
10.6.1.1 Interface Signals Between MIl and PHY
10.6.1.2 MIll Clock
10.6.2 RMIl (Reduced Media-Independent Interface)
10.6.2.1 RMIl Interface Signal Description
10.6.2.2 RMIl Clock
10.6.3 Station Management Agent (SMA) Interface
10.6.4 RMII Timing
Ethernet DMA Features
Linked List Descriptors
10.8.1 Transmit Descriptors
10.8.2 Receive Descriptors
Register Summary
Registers

I12C Controller (12C)

Overview

Features

Functional Description

11.3.1 Introduction

11.3.2 Architecture

11.3.3 12C Bus Timing

11.3.4 12C cmd Structure

11.3.5 12C Master Writes to Slave
11.3.6 Master Reads from Slave
11.3.7 Interrupts

Register Summary

Registers

Espressif Systems 7

Submit Documentation Feedback

224
224
225
225
225
226
226
226
226
226
226
227
227
227
227
228
229
229
229
229
231
231
232
232
233
233
234
234
234
239
244
246

284
284
284
284
284
285
286
287
288
292
294
295
297

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

12 12S Controller (12S)

12.1 Overview
12.2 Features
12.3 The Clock of 12S Module
12.4 125 Mode
12.4.1 Supported Audio Standards
12.4.1.1 Philips Standard
12.4.1.2 MSB Alignment Standard
12.4.1.3 PCM Standard
12.4.2 Module Reset
12.4.3 FIFO Operation
12.4.4 Sending Data
12.4.5 Receiving Data
12.4.6 12S Master/Slave Mode
12.4.7 12S PDM
12.5 Camera-LCD Controller
12.5.1 LCD Master Transmitting Mode
12.5.2 Camera Slave Receiving Mode
12.5.3 ADC/DAC mode
12.6 12S Interrupts
12.6.1 FIFO Interrupts
12.6.2 DMA Interrupts
12.7 Register Summary
12.8 Registers

13 UART Controller (UART)

13.1 Overview
13.2 UART Features
13.3 Functional Description
13.3.1 Introduction
13.3.2 UART Architecture
13.3.3 UART RAM
13.3.4 Baud Rate Detection
13.3.5 UART Data Frame
13.3.6 AT_CMD Character Structure
13.3.7 Flow Control
13.3.7.1 Hardware Flow Control
13.3.7.2 Software Flow Control
13.3.8 UART DMA
13.3.9 UART Interrupts
13.3.10 UHCI Interrupts
13.4 Register Summary
13.4.1 UART Register Summary
13.4.2 UHCI Register Summary
13.5 Registers
13.5.1 UART Registers

Espressif Systems 8
Submit Documentation Feedback

308
308
309
310
311
311
311
311
312
312
312
313
314
316
316
318
318
319
320
321
321
321
321
324

342
342
342
342
342
343
344
345
345
346
346
347
347
348
348
349
349
349
351
3563
353

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

13.5.2 UHCI Registers 353

14 LED PWM Controller (LEDC) 385
14.1 Introduction 385
14.2 Functional Description 385
14.2.1 Architecture 385
14.2.2 Timers 386
14.2.3 Channels 387
14.2.4 Interrupts 388

14.3 Register Summary 388
14.4 Registers 391
15 Remote Control Peripheral (RMT) 401
156.1 Introduction 401
15.2 Functional Description 401
15.2.1 RMT Architecture 401
15.2.2 RMT RAM 402
15.2.3 Clock 402
15.2.4 Transmitter 402
15.2.5 Receiver 403
15.2.6 Interrupts 403

15.3 Register Summary 403
15.4 Registers 404
16 Motor Control PWM (PWM) 410
16.1 Introduction 410
16.2 Features 410
16.3 Submodules 412
16.3.1 Overview 412
16.3.1.1 Prescaler Submodule 412

16.3.1.2 Timer Submodule 412

16.3.1.3 Operator Submodule 413

16.3.1.4 Fault Detection Submodule 415

16.3.1.5 Capture Submodule 415

16.3.2 PWM Timer Submodule 415
16.3.2.1 Configurations of the PWM Timer Submodule 415

16.3.2.2 PWM Timer’s Working Modes and Timing Event Generation 416

16.3.2.3 PWM Timer Shadow Register 420

16.3.2.4 PWM Timer Synchronization and Phase Locking 420

16.3.3 PWM Operator Submodule 420
16.3.3.1 PWM Generator Submodule 422

16.3.3.2 Dead Time Generator Submodule 432

16.3.3.3 PWM Carrier Submodule 437

16.3.3.4 Fault Handler Submodule 440

16.3.4 Capture Submodule 441
16.3.4.1 Introduction 441

Espressif Systems 9 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

16.4
16.5

17

174
17.2

17.3
17.4

18

18.1
18.2

18.3
18.4

19
19.1
19.2
19.3

20

20.1
20.2
20.3

16.3.4.2 Capture Timer
16.3.4.3 Capture Channel
Register Summary
Registers

Pulse Count Controller (PCNT)

Overview

Functional Description

17.2.1 Architecture

17.2.2 Counter Channel Inputs
17.2.3 Watchpoints

17.2.4 Examples

17.2.5 Interrupts

Register Summary

Registers

Timer Group (TIMG)

Introduction

Functional Description

18.2.1 16-bit Prescaler

18.2.2 64-bit Time-base Counter
18.2.3 Alarm Generation

18.2.4 MWDT

18.2.5 |Interrupts

Register Summary

Registers

Watchdog Timers (WDT)

Introduction

Features

Functional Description

19.3.1 Clock
19.3.1.1 Operating Procedure
19.3.1.2 Write Protection
19.3.1.3 Flash Boot Protection
19.3.1.4 Registers

eFuse Controller

Introduction

Features

Functional Description

20.3.1 Structure
20.3.1.1 System Parameter efuse_wr_disable
20.3.1.2 System Parameter efuse_rd_disable
20.3.1.3 System Parameter coding_scheme
20.3.1.4 BLKS3_part_reserve

Espressif Systems 10

Submit Documentation Feedback

442
442
443
445

492
492
492
492
493
493
494
494
495
497

503
503
503
503
503
504
504
504
504
506

514
514
514
514
514
514
5156
515
515

516
516
516
516
516
518
518
518
519

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

20.3.2 Programming of System Parameters
20.3.3 Software Reading of System Parameters
20.3.4 The Use of System Parameters by Hardware Modules
20.3.5 Interrupts
20.4 Register Summary
20.5 Registers

21 Two-wire Automotive Interface (TWAI)

21.1 Overview
21.2 Features
21.3 Functional Protocol
21.3.1 TWAI Properties
21.3.2 TWAI Messages
21.3.2.1 Data Frames and Remote Frames
21.3.2.2 Error and Overload Frames
21.3.2.3 Interframe Space
21.3.3 TWAI Errors
21.3.3.1 Error Types
21.3.3.2 Error States
21.3.3.3 Error Counters
21.83.4 TWAI Bit Timing
21.3.4.1 Nominal Bit
21.3.4.2 Hard Synchronization and Resynchronization
21.4 Architectural Overview
21.4.1 Registers Block
21.4.2 Bit Stream Processor
21.4.3 Error Management Logic
21.4.4 Bit Timing Logic
21.4.5 Acceptance Filter
21.4.6 Receive FIFO
21.5 Functional Description
21.5.1 Modes
21.6.1.1 Reset Mode
21.5.1.2 Operation Mode
21.5.2 Bit Timing
21.5.3 Interrupt Management
21.5.3.1 Receive Interrupt (RXI)
21.5.8.2 Transmit Interrupt (TXI)
21.5.3.3 Error Warning Interrupt (EWI)
21.5.3.4 Data Overrun Interrupt (DOI)
21.5.3.5 Error Passive Interrupt (TXI)
21.5.3.6 Arbitration Lost Interrupt (ALI)
21.5.3.7 Bus Error Interrupt (BEI)
21.5.4 Transmit and Receive Buffers
21.5.4.1 Overview of Buffers
21.5.4.2 Frame Information

Espressif Systems 11
Submit Documentation Feedback

520
522
524
524
524
527

538
538
538
538
538
539
540
542
544
544
544
545
545
546
546
547
547
547
549
549
549
549
550
550
550
550
550
550
551
552
552
552
5563
5563
5563
5563
5563
5563
554

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

21.5.4.3 Frame |dentifier 554

21.6.4.4 Frame Data 555

21.5.5 Receive FIFO and Data Overruns 555
21.5.6 Acceptance Filter 556
21.5.6.1 Single Filter Mode 556

21.5.6.2 Dual Fliter Mode 557

21.5.7 Error Management 558
21.5.7.1 Error Warning Limit 559

21.56.7.2 Error Passive 559

21.5.7.3 Bus-Off and Bus-Off Recovery 559

21.5.8 Error Code Capture 560
21.5.9 Arbitration Lost Capture 561

21.6 Register Summary 561
21.7 Registers 562
22 AES Accelerator (AES) 576
22.1 Introduction 576
22.2 Features 576
22.3 Functional Description 576
22.3.1 AES Algorithm Operations 576
22.3.2 Key, Plaintext and Ciphertext 576
22.3.3 Endianness 576
22.3.4 Encryption and Decryption Operations 579
22.3.5 Speed 579

22.4 Register Summary 579
22.5 Registers 580
23 SHA Accelerator (SHA) 582
23.1 Introduction 582
23.2 Features 582
23.3 Functional Description 582
23.3.1 Padding and Parsing the Message 582
23.3.2 Message Digest 582
23.3.3 Hash Operation 582
23.3.4 Speed 583

23.4 Register Summary 583
23.5 Registers 584
24 RSA Accelerator (RSA) 591
241 Introduction 591
24.2 Features 591
24.3 Functional Description 591
24.3.1 Initialization 591
24.3.2 Large Number Modular Exponentiation 591
24.3.3 Large Number Modular Multiplication 593
24.3.4 Large Number Multiplication 593
Espressif Systems 12 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

24.4 Register Summary 594
24.5 Registers 595
25 Random Number Generator (RNG) 597
25.1 Introduction 597
25.2 Feature 597
25.3 Functional Description 597
25.4 Programming Procedure 598
25.5 Register Summary 598
25.6 Register 598

26 External Memory Encryption and Decryption (FLASH) 5o

26.1 Overview 599
26.2 Features 599
26.3 Functional Description 599
26.3.1 Key Generator 600
26.3.2 Flash Encryption Block 600
26.3.3 Flash Decryption Block 601

26.4 Register Summary 601
26.5 Register 602
27 Memory Management and Protection Units (MMU, MPU)eos
27.1 Introduction 603
27.2 Features 603
27.3 Functional Description 603
27.3.1 PID Controller 603
27.3.2 MPU/MMU 603
27.3.2.1 Embedded Memory 604

27.3.2.2 External Memory 610

27.3.2.3 Peripheral 616

28 Process ID Controller (PID) 618
28.1 Overview 618
28.2 Features 618
28.3 Functional Description 618
28.3.1 Interrupt Identification 618
28.3.2 Information Recording 619
28.3.3 Proactive Process Switching 620

28.4 Register Summary 622
28.5 Registers 623
29 On-Chip Sensors and Analog Signal Processing 628
29.1 Introduction 628
29.2 Capacitive Touch Sensor 628
29.2.1 Introduction 628
29.2.2 Features 628
Espressif Systems 13 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

29.2.3 Available GPIOs 629
29.2.4 Functional Description 629
29.2.5 Touch FSM 630

29.3 SAR ADC 631
29.3.1 Introduction 631
29.3.2 Features 632
29.3.3 Ouitline of Function 632
29.3.4 RTC SAR ADC Controllers 634
29.3.5 DIG SAR ADC Controllers 635

29.4 DAC 637
29.4.1 Introduction 637
29.4.2 Features 637
29.4.3 Structure 638
29.4.4 Cosine Waveform Generator 638
29.4.5 DMA support 639

29.5 Register Summary 640
29.5.1 Sensors 640
29.5.2 Advanced Peripheral Bus 640
29.5.3 RTCI/O 641

29.6 Registers 642
29.6.1 Sensors 642
29.6.2 Advanced Peripheral Bus 651
29.6.3 RTCI/O 655

30 ULP Coprocessor (ULP) 656
30.1 Introduction 656
30.2 Features 656
30.3 Functional Description 657
30.4 Instruction Set 657
30.4.1 ALU - Perform Arithmetic/Logic Operations 657
30.4.1.1 Operations Among Registers 658

30.4.1.2 Operations with Immediate Value 659

30.4.1.3 Operations with Stage Count Register 659

30.4.2 ST - Store Data in Memory 660
30.4.3 LD - Load Data from Memory 660
30.4.4 JUMP - Jump to an Absolute Address 661
30.4.5 JUMPR - Jump to a Relative Offset (Conditional upon RO) 661
30.4.6 JUMPS - Jump to a Relative Address (Conditional upon Stage Count Register) 662
30.4.7 HALT - End the Program 662
30.4.8 WAKE — Wake up the Chip 663
30.4.9 Sleep — Set the ULP Timer’s Wake-up Period 663

30.4.10 WAIT — Wait for a Number of Cycles 663
30.4.11 ADC - Take Measurement with ADC 664
30.4.1212C_RD/I2C_WR - Read/Write 12C 664
30.4.183REG_RD — Read from Peripheral Register 665
30.4.14 REG_WR - Write to Peripheral Register 666
Espressif Systems 14 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

Contents

30.5 ULP Program Execution 666
30.6 RTC_I2C Controller 668
30.6.1 Configuring RTC_I2C 668
30.6.2 Using RTC_I2C 669
30.6.2.1 12C_RD - Read a Single Byte 669

30.6.2.2 12C_WR - Write a Single Byte 669

30.6.2.3 Detecting Error Conditions 670

30.6.2.4 Connecting I2C Signals 670

30.7 Register Summary 670
30.7.1 SENS_ULP Address Space 670
30.7.2 RTC_I2C Address Space 671

30.8 Registers 672
30.8.1 SENS_ULP Address Space 672
30.8.2 RTC_I2C Address Space 674

31 Low-Power Management (RTC_CNTL) 680
31.1 Introduction 680
31.2 Features 680
31.3 Functional Description 680
31.8.1 Overview 681
31.3.2 Digital Core Voltage Regulator 681
31.3.3 Low-Power Voltage Regulator 681
31.3.4 Flash Voltage Regulator 682
31.3.5 Brownout Detector 683
31.3.6 RTC Module 683
31.3.7 Low-Power Clocks 685
31.3.8 Power-Gating Implementation 686
31.3.9 Predefined Power Modes 687

31.3.10 Wakeup Source 689
31.3.11 Reject Sleep 690
31.8.12RTC Timer 690
31.83.13RTC Boot 690

31.4 Register Summary 691
31.5 Registers 693
Glossary 721
Abbreviations for Peripherals 721
Abbreviations for Registers 721
Revision History 722
Espressif Systems 15 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

List of Tables

List of Tables
1-1 Address Mapping 26
1-2 Embedded Memory Address Mapping 27
1-3 Module with DMA 29
1-4 External Memory Address Mapping 29
1-5 Cache memory mode 30
1-6 Peripheral Address Mapping 31
2-1 PRO_CPU, APP_CPU Interrupt Configuration 35
2-2 CPU Interrupts 37
3-1 PRO_CPU and APP_CPU Reset Reason Values 39
3-2 CPU_CLK Source 41
3-3 CPU_CLK Derivation 41
3-4 Peripheral Clock Usage 42
3-5 APB_CLK 42
3-6 REF_TICK 43
3-7 LEDC_SCLK Derivation 43
4-1 |O_MUX Light-sleep Pin Function Registers 53
4-2 GPIO Matrix Peripheral Signals 55
4-3 10_MUX Pad Summary 60
4-4 RTC_MUX Pin Summary 61
7-1 Mapping Between SPI Bus Signals and Pin Function Signals 125
7-2 Command Definitions Supported by GP-SPI Slave in Half-duplex Mode 127
7-3 Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Master 129
7-4 Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Slave 129
9-1 SD/MMC Signal Description 192
9-2 DESO 197
9-3 DESH 198
9-4 DES2 199
9-5 DESS3 199
10-1 Destination Address Filtering 227
10-2 Source Address Filtering 228
10-8 Timing Parameters - Receiving Data 233
10-4 Timing Parameters — Transmitting Data 234
10-5 Transmit Descriptor O (TDESO) 235
10-6 Transmit Descriptor 1 (TDEST) 239
10-7 Transmit Descriptor 2 (TDES2) 239
10-8 Transmit Descriptor 3 (TDES3) 239
10-9 Receive Descriptor 0 (RDESO) 240
10-10 Receive Descriptor 1 (RDES1) 242
10-11 Receive Descriptor 2 (RDES2) 243
10-12 Receive Descriptor 3 (RDES3) 243
10-13 Receive Descriptor 4 (RDES4) 243
11-1 SCL Frequency Configuration 286
12-1 128 Signal Bus Description 309
Espressif Systems 16 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

List of Tables

12-2 Register Configuration 313
12-3 Send Channel Mode 313
12-4 Modes of Writing Received Data into FIFO and the Corresponding Register Configuration 315
12-5 The Register Configuration to Which the Four Modes Correspond 315
12-6 Upsampling Rate Configuration 317
12-7 Down-sampling Configuration 318
14-1 Commonly-used Frequencies and Resolutions 387
16-1 Configuration Parameters of the Operator Submodule 414
16-2 Timing Events Used in PWM Generator 422
16-3 Timing Events Priority When PWM Timer Increments 423
16-4 Timing Events Priority when PWM Timer Decrements 423
16-5 Dead Time Generator Switches Control Registers 433
16-6 Typical Dead Time Generator Operating Modes 434
20-1 System Parameters 516
20-2 BLOCK1/2/3 Encoding 519
20-3 Program Registers 520
20-4 Timing Configuration 522
20-5 Software Read Registers 523
21-1 Data Frames and Remote Frames in SFF and EFF 541
21-2 Error Frame 542
21-3 Overload Frame 543
21-4 Interframe Space 544
21-5 Segments of a Nominal Bit Time 546
21-6 Bit Information of TWAI_CLOCK_DIVIDER_REG; TWAI Address 0x18 551
21-7 Bit Information of TWAI_BUS_TIMING_1_REG; TWAI Address Ox1c 551
21-8 Buffer Layout for Standard Frame Format and Extended Frame Format 553
21-9 TX/RX Frame Information (SFF/EFF) TWAI Address 0x40 554
21-10 TX/RX Identifier 1 (SFF); TWAI Address 0x44 555
21-11 TX/RX Identifier 2 (SFF); TWAI Address 0x48 555
21-12 TX/RX Identifier 1 (EFF); TWAI Address Ox44 555
21-13 TX/RX Identifier 2 (EFF); TWAI Address 0x48 555
21-14 TX/RX Identifier 3 (EFF); TWAI Address Ox4c 555
21-15 TX/RX Identifier 4 (EFF); TWAI Address 0x50 555
21-16 Bit Information of TWAI_ERR_CODE_CAP_REG; TWAI Address 0x30 560
21-17 Bit Information of Bits SEG.4 - SEG.0 560
21-18 Bit Information of TWAI_ARB LOST CAP_REG; TWAI Address 0x2¢ 561
22-1 Operation Mode 576
22-2 AES Text Endianness 577
22-3 AES-128 Key Endianness 578
22-4 AES-192 Key Endianness 578
22-5 AES-256 Key Endianness 578
27-1 MPU and MMU Structure for Internal Memory 604
27-2 MPU for RTC FAST Memory 605
27-3 MPU for RTC SLOW Memory 605
27-4 Page Mode of MMU for the Remaining 128 KB of Internal SRAMO and SRAM2 606
27-5 Page Boundaries for SRAMO MMU 607
Espressif Systems 17 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

List of Tables

27-6 Page Boundaries for SRAM2 MMU

27-7 DPORT_DMMU_TABLEn_REG & DPORT_IMMU_TABLEn_REG
27-8 MPU for DMA

27-9 Virtual Address for External Memory

27-10 MMU Entry Numbers for PRO_CPU

27-11 MMU Entry Numbers for APP_CPU

27-12 MMU Entry Numbers for PRO_CPU (Special Mode)
27-13 MMU Entry Numbers for APP_CPU (Special Mode)
27-14 Virtual Address Mode for External SRAM

27-15 Virtual Address for External SRAM (Normal Mode)
27-16 Virtual Address for External SRAM (Low-High Mode)
27-17 Virtual Address for External SRAM (Even-Odd Mode)
27-18 MMU Entry Numbers for External RAM

27-19 MPU for Peripheral

27-20 DPORT_AHBLITE_MPU_TABLE_X_REG

28-1 Interrupt Vector Entry Address

28-2 Configuration of PIDCTRL_LEVEL_REG

28-3 Configuration of PIDCTRL_FROM_n_REG

29-1 ESP32 Capacitive Sensing Touch Pads

29-2 Inputs of SAR ADC

29-3 ESP32 SAR ADC Controllers

29-4 Fields of the Pattern Table Register

29-5 Fields of Type | DMA Data Format

29-6 Fields of Type Il DMA Data Format

30-1 ALU Operations Among Registers

30-2 ALU Operations with Immediate Value

30-3 ALU Operations with Stage Count Register

30-4 Input Signals Measured Using the ADC Instruction
31-1 RTC Power Domains

31-2 Wake-up Source

Espressif Systems 18
Submit Documentation Feedback

607
608
609
611
611
611
612
612
613
614
614
614
615
616
617
619
619
620
629
634
634
636
637
637
658
659
660
664
686
689

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

List of Figures

List of Figures

1-1

System Structure

1-2 System Address Mapping
1-83 Cache Block Diagram
2-1 Interrupt Matrix Structure
3-1 System Reset
3-2 System Clock
4-1 10_MUX, RTC IO_MUX and GPIO Matrix Overview
4-2 Peripheral Input via I0_MUX, GPIO Matrix
4-3 Output via GPIO Matrix
4-4 ESP32 I/0O Pad Power Sources (QFN 6*6, Top View)
4-5 ESP32 1/O Pad Power Sources (QFN 5*5, Top View)
6-1 DMA Engine Architecture
6-2 Linked List Structure
6-3 Data Transfer in UDMA Mode
6-4 SPIDMA
7-1 SPI Architecture
7-2 SPI Master and Slave Full-duplex/Half-duplex Communication
7-3 SPI Data Buffer
7-4 GP-SPI
7-5 Parallel QSPI
7-6 Communication Format of Parallel QSPI
8-1 SDIO Slave Block Diagram
8-2 SDIO Bus Packet Transmission
8-3 CMD53 Content
8-4 SDIO Slave DMA Linked List Structure
8-5 SDIO Slave Linked List
8-6 Packet Sending Procedure (Initiated by Slave)
8-7 Packet Receiving Procedure (Initiated by Host)
8-8 Loading Receiving Buffer
8-9 Sampling Timing Diagram
8-10 Output Timing Diagram
9-1 SD/MMC Controller Topology
9-2 SD/MMC Controller External Interface Signals
9-3 SDIO Host Block Diagram
9-4 Command Path State Machine
9-5 Data Transmit State Machine
9-6 Data Receive State Machine
9-7 Descriptor Chain
9-8 The Structure of a Linked List
9-9 Clock Phase Selection
10-1 Ethernet MAC Functionality Overview
10-2 Ethernet Block Diagram
10-3 Mill Interface
Espressif Systems 19

Submit Documentation Feedback

25
25
30
34
39
40
48
49
51
54
54
120
121
122
123
125
126
128
131
131
132
159
160
160
161
161
162
163
164
164
165
191
192
192
194
194
195
197
197
201
221
223
230

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

List of Figures

10-4
10-5
10-6
10-7
10-8
10-9

Mil Clock

RMII Interface

RMII Clock

RMII Timing - Receiving Data
RMII Timing — Transmitting Data
Transmit Descriptor

10-10 Receive Descriptor

11-1
11-2
11-3
11-4
11-5
11-6
1-7
11-8
11-9

12C Master Architecture

12C Slave Architecture

12C Sequence Chart

Structure of The 12C Command Register

12C Master Writes to Slave with 7-bit Address

12C Master Writes to Slave with 10-bit Address

12C Master Writes to addrM in RAM of Slave with 7-bit Address
Master Writes to Slave with 7-bit Address in Three Segments
Master Reads from Slave with 7-bit Address

11-10 Master Reads from Slave with 10-bit Address
11-11 Master Reads N Bytes of Data from addrM in Slave with 7-bit Address
11-12 Master Reads from Slave with 7-bit Address in Three Segments

121
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9

12S System Block Diagram

12S Clock

Philips Standard

MSB Alignment Standard

PCM Standard

Tx FIFO Data Mode

The First Stage of Receiving Data

Modes of Writing Received Data into FIFO
PDM Transmitting Module

12-10 PDM Sends Signal

12-11 PDM Receives Signal

12-12 PDM Receive Module

12-13 LCD Master Transmitting Mode

12-14 LCD Master Transmitting Data Frame, Form 1
12-15 LCD Master Transmitting Data Frame, Form 2
12-16 Camera Slave Receiving Mode

12-17 ADC Interface of 1250

12-18 DAC Interface of 12S

12-19 Data Input by 12S DAC Interface

13-1
13-2
13-3
13-4
13-5
14-1
14-2
14-3

UART Basic Structure

UART Shared RAM

UART Data Frame Structure

AT_CMD Character Format

Hardware Flow Control

LED_PWM Architecture

LED_PWM High-speed Channel Diagram
LED_PWM Divider

Espressif Systems 20

Submit Documentation Feedback

231
232
233
233
234
234
240
285
285
286
287
288
289
290
291
292
293
293
294
308
310
311
311
312
313
314
315
316
317
317
317
318
319
319
319
320
320
320
343
344
345
346
347
385
385
386

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

List of Figures

14-4
14-5
15-1
15-2
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9

LED PWM Output Signal Diagram
Output Signal Diagram of Fading Duty Cycle
RMT Architecture

Data Structure

MCPWM Module Overview
Prescaler Submodule

Timer Submodule

Operator Submodule

Fault Detection Submodule
Capture Submodule

Count-Up Mode Waveform
Count-Down Mode Waveforms

Count-Up-Down Mode Waveforms, Count-Down at Synchronization Event
16-10 Count-Up-Down Mode Waveforms, Count-Up at Synchronization Event

16-11 UTEP and UTEZ Generation in Count-Up Mode

16-12 DTEP and DTEZ Generation in Count-Down Mode
16-13 DTEP and UTEZ Generation in Count-Up-Down Mode
16-14 Submodules Inside the PWM Operator
16-15 Symmetrical Waveform in Count-Up-Down Mode

387
388
401
402
410
412
412
413
415
415
416
417
417
417
418
419
419
421
425

16-16 Count-Up, Single Edge Asymmetric Waveform, with Independent Modulation on PWMxA and

PWMxB — Active High

426

16-17 Count-Up, Pulse Placement Asymmetric Waveform with Independent Modulation on PWMxA 427

16-18 Count-Up-Down, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA and

PWMxB — Active High

428

16-19 Count-Up-Down, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA and

PWMxB — Complementary

16-20 Example of an NCI Software-Force Event on PWMxA

16-21 Example of a CNTU Software-Force Event on PWMxB
16-22 Options for Setting up the Dead Time Generator Submodule
16-23 Active High Complementary (AHC) Dead Time Waveforms
16-24 Active Low Complementary (ALC) Dead Time Waveforms
16-25 Active High (AH) Dead Time Waveforms
16-26 Active Low (AL) Dead Time Waveforms
16-27 Example of Waveforms Showing PWM Carrier Action
16-28 Example of the First Pulse and the Subsequent Sustaining Pulses of the PWM Carrier Submodule 439
16-29 Possible Duty Cycle Settings for Sustaining Pulses in the PWM Carrier Submodule 440

171
17-2
17-3
21-1
21-2
21-3
21-4
21-5
21-6
21-7

PULSE_CNT Architecture
PULSE_CNT Upcounting Diagram
PULSE_CNT Downcounting Diagram

The bit fields of Data Frames and Remote Frames

Various Fields of an Error Frame

The Bit Fields of an Overload Frame
The Fields within an Interframe Space
Layout of a Bit

TWAI Overview Diagram

Acceptance Filter

Espressif Systems

21

Submit Documentation Feedback

429
430
431
433
434
435
435
436
438

492
494
494
540
542
543
544
548
548
556

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

List of Figures

21-8 Single Filter Mode 557
21-9 Dual Filter Mode 558
21-10 Error State Transition 559
21-11 Positions of Arbitration Lost Bits 561
25-1 Noise Source 597
26-1 Flash Encryption/Decryption Module Architecture 599
27-1 MMU Access Example 606
28-1 Interrupt Nesting 621
29-1 Touch Sensor 628
29-2 Touch Sensor Structure 629
29-3 Touch Sensor Operating Flow 630
29-4 Touch FSM Structure 631
29-5 SAR ADC Depiction 632
29-6 SAR ADC Outline of Function 633
29-7 RTC SAR ADC Outline of Function 635
29-8 Diagram of DIG SAR ADC Controllers 636
29-9 Diagram of DAC Function 638
29-10 Cosine Waveform (CW) Generator 639
30-1 ULP Coprocessor Diagram 656
30-2 The ULP Coprocessor Instruction Format 657
30-3 Instruction Type — ALU for Operations Among Registers 658
30-4 Instruction Type — ALU for Operations with Immediate Value 659
30-5 Instruction Type — ALU for Operations with Stage Count Register 659
30-6 Instruction Type — ST 660
30-7 Instruction Type — LD 660
30-8 Instruction Type — JUMP 661
30-9 Instruction Type — JUMPR 661
30-10 Instruction Type — JUMP 662
30-11 Instruction Type — HALT 662
30-12 Instruction Type — WAKE 663
30-13 Instruction Type — SLEEP 663
30-14 Instruction Type — WAIT 663
30-15 Instruction Type — ADC 664
30-16 Instruction Type — I2C 664
30-17 Instruction Type — REG_RD 665
30-18 Instruction Type — REG_WR 666
30-19 Control of ULP Program Execution 667
30-20 Sample of a ULP Operation Sequence 668
30-21 12C Read Operation 669
30-22 12C Write Operation 670
31-1 ESP32 Power Control 680
31-2 Digital Core Voltage Regulator 681
31-3 Low-Power Voltage Regulator 682
31-4 Flash Voltage Regulator 683
31-5 Brownout Detector 683
31-6 RTC Structure 684
Espressif Systems 22 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

List of Figures

31-7 RTC Low-Power Clocks 685
31-8 Digital Low-Power Clocks 686
31-9 RTC States 686
31-10 Power Modes 688
31-11 ESP32 Boot Flow 691
Espressif Systems 23 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

1 System and Memory

1.1 Introduction
The ESP32 is a dual-core system with two Harvard Architecture Xtensa LX6 CPUs. Allembedded memory, external
memory and peripherals are located on the data bus and/or the instruction bus of these CPUs.

With some minor exceptions (see below), the address mapping of two CPUs is symmetric, meaning that they
use the same addresses to access the same memory. Multiple peripherals in the system can access embedded
memory via DMA.

The two CPUs are named “PRO_CPU” and “APP_CPU” (for “protocol” and “application”), however, for most pur-
poses the two CPUs are interchangeable.

1.2 Features
e Address Space

- Symmetric address mapping

- 4 GB (32-bit) address space for both data bus and instruction bus

- 1296 KB embedded memory address space

- 19704 KB external memory address space

- 512 KB peripheral address space

- Some embedded and external memory regions can be accessed by either data bus or instruction bus

- 328 KB DMA address space

Embedded Memory
- 448 KB Internal ROM
- 520 KB Internal SRAM
- 8 KB RTC FAST Memory
- 8 KB RTC SLOW Memory

External Memory
Off-chip SPI memory can be mapped into the available address space as external memory. Parts of the
embedded memory can be used as transparent cache for this external memory.

— Supports up to 16 MB off-Chip SPI Flash.
— Supports up to 8 MB off-Chip SPI SRAM.

Peripherals
- 41 peripherals
e DMA
- 13 modules are capable of DMA operation

The block diagram in Figure 1-1 illustrates the system structure, and the block diagram in Figure 1-2 illustrates the
address map structure.

Espressif Systems 24 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

DMA

v

Embedded
Memory

o Cache «

PRO_CPU ‘ APP_CPU
‘ MMU ‘

v

External
Memory

Peripheral

Figure 1-1. System Structure

0x0000_0000
0x3F3F_FFFF

0x3F40_0000
0x3F7F_FFFF

0x3F80_0000
0x3FBF_FFFF

0x3FC0_0000
OX3FEF_FFFF

0x3FF0_0000
OX3FF7_FFFF

Peripheral

0x3FF8_0000
0x3FF8_1FFF

0x3FF8_2000
External Ox3FF8_FFFF #

Flash 24 0x3FF9_0000 Internal Internal RTC RTC
OX3FF9_FFFF ROM > Sram FAST Memory SLOW Memory

MMU Cache

0x3FFA_0000
External 23 Ox3FFA_DFFF

SRAM

O0x3FFA_E000
OX3FFF_FFFF

— DMA

0x4000_0000
0x4005_FFFF

0x4006_0000
0x4006_FFFF

0x4007_0000
0x400B_FFFF

0x400C_0000
0x400C_1FFF

0x400C_2000
Ox40BF_FFFF

0x40C0_0000
OX4FFF_FFFF

0x5000_0000
0x5000_1FFF

0x5000_2000
OXFFFF_FFFF

Figure 1-2. System Address Mapping

Espressif Systems 25 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

1.3 Functional Description

1.3.1 Address Mapping
Each of the two Harvard Architecture Xtensa LX6 CPUs has 4 GB (32-bit) address space. Address spaces are
symmetric between the two CPUs.

Addresses below 0x4000_0000 are serviced using the data bus. Addresses in the range 0x4000_0000 ~ Ox4FFF_FFFF
are serviced using the instruction bus. Finally, addresses over and including 0x5000_0000 are shared by the data
and instruction bus.

The data bus and instruction bus are both little-endian: for example, byte addresses 0x0, Ox1, 0x2, Ox3 access
the least significant, second least significant, second most significant, and the most significant bytes of the 32-bit
word stored at the Ox0 address, respectively. The CPU can access data bus addresses via aligned or non-aligned
byte, half-word and word read-and-write operations. The CPU can read and write data through the instruction
bus, but only in a word aligned manner; non-word-aligned access will cause a CPU exception.

Each CPU can directly access embedded memory through both the data bus and the instruction bus, external
memory which is mapped into the address space (via transparent caching & MMU), and peripherals. Table 1-1
illustrates address ranges that can be accessed by each CPU’s data bus and instruction bus.

Some embedded memories and some external memories can be accessed via the data bus or the instruction bus.
In these cases, the same memory is available to either of the CPUs at two address ranges.

Table 1-1. Address Mapping

Boundary Address :
Bus Type , Size Target
Low Address High Address
0x0000_0000 Ox3F3F_FFFF Reserved
Data 0x3F40_0000 Ox3F7F_FFFF 4 MB External Memory
Data 0x3F80_0000 Ox3FBF_FFFF 4 MB External Memory
Ox3FCO0_0000 Ox3FEF_FFFF 3 MB Reserved
Data Ox3FFO_0000 Ox3FF7_FFFF 512 KB Peripheral
Data Ox3FF8_0000 Ox3FFF_FFFF 512 KB Embedded Memory
Instruction 0x4000_0000 Ox400C_1FFF 776 KB Embedded Memory
Instruction 0x400C_2000 Ox40BF_FFFF 11512 KB External Memory
0x40C0_0000 Ox4FFF_FFFF 244 MB Reserved
Data / Instruction 0x5000_0000 0x5000_1FFF 8 KB Embedded Memory
0x5000_2000 OxFFFF_FFFF Reserved

1.3.2 Embedded Memory
The Embedded Memory consists of four segments: internal ROM (448 KB), internal SRAM (520 KB), RTC FAST
memory (8 KB) and RTC SLOW memory (8 KB).

The 448 KB internal ROM is divided into two parts: Internal ROM 0 (384 KB) and Internal ROM 1 (64 KB). The 520
KB internal SRAM is divided into three parts: Internal SRAM 0 (192 KB), Internal SRAM 1 (128 KB), and Internal
SRAM 2 (200 KB). RTC FAST Memory and RTC SLOW Memory are both implemented as SRAM.

Table 1-2 lists all embedded memories and their address ranges on the data and instruction buses.

Espressif Systems

26

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

Table 1-2. Embedded Memory Address Mapping

Boundary Address :
Bus Type - Size Target Comment
Low Address High Address
Data Ox3FF8_0000 Ox3FF8_1FFF 8 KB RTC FAST Memory PRO_CPU Only
Ox3FF8_2000 Ox3FF8_FFFF 56 KB Reserved -
Data Ox3FF9_0000 Ox3FF9_FFFF 64 KB Internal ROM 1 -
Ox3FFA_0000 Ox3FFA_DFFF 56 KB Reserved -
Data Ox3FFA_EO00 Ox3FFD_FFFF 200 KB Internal SRAM 2 DMA
Data Ox3FFE_0000 Ox3FFF_FFFF 128 KB Internal SRAM 1 DMA
Boundary Address :
Bus Type , Size Target Comment
Low Address High Address
Instruction 0x4000_0000 0Ox4000_7FFF 32 KB Internal ROM O Remap
Instruction 0x4000_8000 0x4005_FFFF 352 KB Internal ROM 0 -
0x4006_0000 Ox4006_FFFF 64 KB Reserved -
Instruction 0x4007_0000 0x4007_FFFF 64 KB Internal SRAM 0O Cache
Instruction 0x4008_0000 Ox4009_FFFF 128 KB Internal SRAM 0 -
Instruction 0x400A_0000 Ox400A_FFFF 64 KB Internal SRAM 1 -
Instruction 0x400B_0000 Ox400B_7FFF 32 KB Internal SRAM 1 Remap
Instruction 0x400B_8000 0x400B_FFFF 32 KB Internal SRAM 1 -
Instruction 0x400C_0000 Ox400C_1FFF 8 KB RTC FAST Memory PRO_CPU Only
Boundary Address :
Bus Type , Size Target Comment
Low Address High Address
Data Instruc-
; 0x5000_0000 0x5000_1FFF 8 KB RTC SLOW Memory -
ion
1.3.2.1 Internal ROM 0

The capacity of Internal ROM 0 is 384 KB. It is accessible by both CPUs through the address range 0x4000_0000
~ 0x4005_FFFF, which is on the instruction bus.

The address range of the first 32 KB of the ROM 0 (0x4000_0000 ~ 0x4000_7FFF) can be remapped in order to
access a part of Internal SRAM 1 that normally resides in a memory range of 0x400B_0000 ~ 0x400B_7FFF. While
remapping, the 32 KB SRAM cannot be accessed by an address range of 0x400B_0000 ~ 0x400B_7FFF any more,
but it can still be accessible through the data bus (Ox3FFE_8000 ~ Ox3FFE_FFFF). This can be done on a per-CPU
basis: setting bit 0 of register DPORT_PRO_BOOT_REMAP_CTRL_REG or DPORT_APP_BOOT_REMAP_CTRL_REG
will remap SRAM for the PRO_CPU and APP_CPU, respectively.

1.3.2.2

Internal ROM 1

The capacity of Internal ROM 1 is 64 KB. It can be read by either CPU at an address range Ox3FF9_0000 ~
Ox3FF9_FFFF of the data bus.

1.3.2.3

Internal SRAM 0

The capacity of Internal SRAM 0 is 192 KB. Hardware can be configured to use the first 64 KB to cache external
memory access. When not used as cache, the first 64 KB can be read and written by either CPU at addresses

Espressif Systems

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

0x4007_0000 ~ 0x4007_FFFF of the instruction bus. The remaining 128 KB can always be read and written by
either CPU at addresses 0x4008_0000 ~ 0x4009_FFFF of instruction bus.

1.3.2.4 Internal SRAM 1

The capacity of Internal SRAM 1 is 128 KB. Either CPU can read and write this memory at addresses Ox3FFE_0000
~ Ox3FFF_FFFF of the data bus, and also at addresses 0x400A_0000 ~ 0x400B_FFFF of the instruction bus.

The address range accessed via the instruction bus is in reverse order (word-wise) compared to access via the
data bus. That is to say, address

Ox3FFE_0000 and 0x400B_FFFC access the same word

Ox3FFE_0004 and 0x400B_FFF8 access the same word

Ox3FFE_0008 and 0x400B_FFF4 access the same word

Ox3FFF_FFF4 and 0x400A_0008 access the same word

Ox3FFF_FFF8 and Ox400A_0004 access the same word

Ox3FFF_FFFC and 0x400A_0000 access the same word

The data bus and instruction bus of the CPU are still both little-endian, so the byte order of individual words is not
reversed between address spaces. For example, address

Ox3FFE_0000 accesses the least significant byte in the word accessed by 0x400B_FFFC.
Ox3FFE_0001 accesses the second least significant byte in the word accessed by 0x400B_FFFC.
Ox3FFE_0002 accesses the second most significant byte in the word accessed by 0x400B_FFFC.
Ox3FFE_0003 accesses the most significant byte in the word accessed by 0x400B_FFFC.
Ox3FFE_0004 accesses the least significant byte in the word accessed by 0x400B_FFF8.
Ox3FFE_0005 accesses the second least significant byte in the word accessed by 0x400B_FFF8.
Ox3FFE_0006 accesses the second most significant byte in the word accessed by 0x400B_FFF8.
Ox3FFE_00Q07 accesses the most significant byte in the word accessed by 0x400B_FFF8.
Ox3FFF_FFF8 accesses the least significant byte in the word accessed by 0x400A_0004.
Ox3FFF_FFF9 accesses the second least significant byte in the word accessed by 0x400A_0004.
Ox3FFF_FFFA accesses the second most significant byte in the word accessed by 0x400A_0004.
Ox3FFF_FFFB accesses the most significant byte in the word accessed by 0x400A_0004.
Ox3FFF_FFFC accesses the least significant byte in the word accessed by 0x400A_0000.
Ox3FFF_FFFD accesses the second most significant byte in the word accessed by 0x400A_0000.
Ox3FFF_FFFE accesses the second most significant byte in the word accessed by 0x400A_0000.
Ox3FFF_FFFF accesses the most significant byte in the word accessed by 0x400A_0000.

Part of this memory can be remapped onto the ROM 0 address space. See Internal Rom O for more informa-
tion.

1.3.2.5 Internal SRAM 2

The capacity of Internal SRAM 2 is 200 KB. It can be read and written by either CPU at addresses Ox3FFA_E000
~ Ox3FFD_FFFF on the data bus.

Espressif Systems 28 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

1.3.2.6 DMA

DMA uses the same addressing as the CPU data bus to read and write Internal SRAM 1 and Internal SRAM 2.
This means DMA uses an address range of Ox3FFE_0000 ~ Ox3FFF_FFFF to read and write Internal SRAM 1 and
an address range of Ox3FFA_EOOO ~ Ox3FFD_FFFF to read and write Internal SRAM 2.

In the ESP32, 13 peripherals are equipped with DMA. Table 1-3 lists these peripherals.

Table 1-3. Module with DMA

UARTO	UART1	UART2
sPn	sP2	SPi3
12so	st	
k		

| SDIO Slave | SDMMC
] EMAC
] BT \ WIF]

1.3.2.7 RTC FAST Memory

RTC FAST Memory is 8 KB of SRAM. It can be read and written by PRO_CPU only at an address range of
Ox3FF8_0000 ~ Ox3FF8_1FFF on the data bus or at an address range of 0x400C_0000 ~ 0x400C_1FFF on the in-
struction bus. Unlike most other memory regions, RTC FAST memory cannot be accessed by the APP_CPU.

The two address ranges of PRO_CPU access RTC FAST Memory in the same order, so, for example, addresses
Ox3FF8_0000 and 0x400C_0000 access the same word. On the APP_CPU, these address ranges do not
provide access to RTC FAST Memory or any other memory location.

1.3.2.8 RTC SLOW Memory

RTC SLOW Memory is 8 KB of SRAM which can be read and written by either CPU at an address range of
0x5000_0000 ~ 0x5000_1FFF. This address range is shared by both the data bus and the instruction bus.

1.3.3 External Memory

The ESP32 can access external SPI flash and SPI SRAM as external memory. Table 1-4 provides a list of external
memories that can be accessed by either CPU at a range of addresses on the data and instruction buses. When
a CPU accesses external memory through the Cache and MMU, the cache will map the CPU’s address to an
external physical memory address (in the external memory’s address space), according to the MMU settings. Due
to this address mapping, the ESP32 can address up to 16 MB External Flash and 8 MB External SRAM.

Table 1-4. External Memory Address Mapping

Boundary Address :
Bus Type : Size Target Comment
Low Address High Address
Data 0x3F40_0000 Ox3F7F_FFFF 4 MB External Flash Read
Data Ox3F80_0000 Ox3FBF_FFFF 4 MB External SRAM Read and Write
Boundary Address :
Bus Type , Size Target Comment
Low Address High Address
Instruction | 0x400C_2000 Ox40BF_FFFF 11512 KB External Flash Read
Espressif Systems 29 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

1.3.4 Cache

As shown in Figure 1-3, each of the two CPUs in ESP32 has 32 KB of cache featuring a block size of 32 bytes for ac-
cessing external storage. PRO CPU uses bit PRO_CACHE_ENABLE in register DPORT_PRO_CACHE_CTRL_REG
to enable the Cache, while APP CPU uses bit APP_CACHE_ENABLE in register DPORT_APP_CACHE_CTRL_REG
to enable the same function.

PRO CPU APP CPU
External w External
memory < CacheO Cachel |- » memory
l ‘ CACHE_MUX_MODE
Instruction bus SWAP Instruction bus

3
B A o o

PRO_CACHE_ENABLE APP_CACHE_ENABLE

POOLO POOL1
32KB 32KB

Cache memory

Figure 1-3. Cache Block Diagram

ESP32 uses a two-way set-associative cache. When the Cache function is to be used either by PRO CPU or APP
CPU, bit CACHE_MUX_MODE[1:0] in register DPORT_CACHE_MUX_MODE_REG can be set to select POOLO or
POOL1 in the Internal SRAMO as the cache memory. When both PRO CPU and APP CPU use the Cache function,
POOLO and POOL1 in the Internal SRAMO will be used simultaneously as the cache memory, while they can also
be used by the instruction bus. This is depicted in table 1-5 below.

Table 1-5. Cache memory mode

CACHE_MUX_MODE POOLO POOL1
0 PRO CPU APP CPU
1 PRO CPU/APP CPU -
2 - PRO CPU/APP CPU
3 APP CPU PRO CPU

As described in table 1-5, when bit CACHE_MUX_MODE is set to 1 or 2, PRO CPU and APP CPU cannot enable
the Cache function at the same time. When the Cache function is enabled, POOLO or POOL1 can only be used
as the cache memory, and cannot be used by the instruction bus as well.

ESP32 Cache supports the Flush function. It is worth noting that when the Flush function is used, the data written
in the cache will be disposed rather than being rewritten into the External SRAM. To enable the Flush function, first
clear bit x_CACHE_FLUSH_ENA in register DPORT_x_CACHE_CTRL_REG, then set this bit to 1. Afterwards, the
system hardware will set bit x_CACHE_FLUSH_DONE to 1, where x can be "PRO” or "APP”, indicating that the
cache flush operation has been completed.

Espressif Systems 30 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

For more information about the address mapping of ESP32 Cache, please refer to Embedded Memory and External

Memory.

1.3.5 Peripherals

The ESP32 has 41 peripherals. Table 1-6 specifically describes the peripherals and their respective address ranges.

Nearly all peripheral modules can be accessed by either CPU at the same address with just a single exception;
this being the PID Controller.

Table 1-6. Peripheral Address Mapping

Boundary Address :
Bus Type , Size Target Comment
Low Address High Address
Data Ox3FFO_0000 Ox3FFO_OFFF 4 KB DPort Register
Data Ox3FFO_1000 Ox3FFO_1FFF 4 KB AES Accelerator
Data Ox3FF0_2000 Ox3FFO_2FFF 4 KB RSA Accelerator
Data Ox3FF0_3000 Ox3FFO_3FFF 4 KB SHA Accelerator
Data Ox3FF0_4000 Ox3FFO_4FFF 4 KB Secure Boot
Ox3FFO_5000 Ox3FFO_FFFF 44 KB Reserved
Data Ox3FF1_0000 Ox3FF1_3FFF 16 KB Cache MMU Table
Ox3FF1_4000 Ox3FF1_EFFF 44 KB Reserved
Data Ox3FF1_FO00 Ox3FF1_FFFF 4 KB PID Controller Per-CPU peripheral
Ox3FF2_0000 Ox3FF3_FFFF 128 KB Reserved
Data Ox3FF4_0000 Ox3FF4_0FFF 4 KB UARTO
Ox3FF4_1000 Ox3FF4_1FFF 4 KB Reserved
Data Ox3FF4_2000 Ox3FF4_2FFF 4 KB SPI1
Data Ox3FF4_3000 Ox3FF4_3FFF 4 KB SPIO
Data Ox3FF4_4000 Ox3FF4_4FFF 4 KB GPIO
Ox3FF4_5000 Ox3FF4_7FFF 12 KB Reserved
Data Ox3FF4_8000 Ox3FF4_8FFF 4 KB RTC
Data Ox3FF4_9000 Ox3FF4_9FFF 4 KB 1O MUX
Ox3FF4_A000 Ox3FF4_AFFF 4 KB Reserved
Data Ox3FF4_B000 Ox3FF4_BFFF 4 KB SDIO Slave One of three parts
Data Ox3FF4_C000 Ox3FF4_CFFF 4 KB UDMAT
Ox3FF4_D000 Ox3FF4_EFFF 8 KB Reserved
Data Ox3FF4_FO00 Ox3FF4_FFFF 4 KB 12S0
Data Ox3FF5_0000 Ox3FF5_OFFF 4 KB UART1
Ox3FF5_1000 Ox3FF5_2FFF 8 KB Reserved
Data Ox3FF5_3000 Ox3FF5_3FFF 4 KB 12C0
Data Ox3FF5_4000 Ox3FF5_4FFF 4 KB UDMAO
Data Ox3FF5_5000 Ox3FF5_5FFF 4 KB SDIO Slave One of three parts
Data Ox3FF5_6000 Ox3FF5_6FFF 4 KB RMT
Data Ox3FF5_7000 Ox3FF5_7FFF 4 KB PCNT
Data Ox3FF5_8000 Ox3FF5_8FFF 4 KB SDIO Slave One of three parts
Data Ox3FF5_9000 Ox3FF5_9FFF 4 KB LED PWM
Data Ox3FF5_A000 Ox3FF5_AFFF 4 KB eFuse Controller
Data Ox3FF5_B000 Ox3FF5_BFFF 4 KB Flash Encryption

Espressif Systems

Submit Documentation Feedback

31

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

Boundary Address _

Bus Type , Size Target Comment

Low Address High Address

Ox3FF5_C000 Ox3FF5_DFFF 8 KB Reserved
Data Ox3FF5_E000 Ox3FF5_EFFF 4 KB MCPWMO
Data Ox3FF5_F000 Ox3FF5_FFFF 4 KB TIMGO
Data Ox3FF6_0000 Ox3FF6_OFFF 4 KB TIMGA

Ox3FF6_1000 Ox3FF6_3FFF 12 KB Reserved
Data Ox3FF6_4000 Ox3FF6_4FFF 4 KB SPI2
Data Ox3FF6_5000 Ox3FF6_5FFF 4 KB SPI3
Data Ox3FF6_6000 Ox3FF6_6FFF 4 KB SYSCON
Data Ox3FF6_7000 Ox3FF6_7FFF 4 KB 12CA
Data Ox3FF6_8000 Ox3FF6_8FFF 4 KB SDMMC
Data Ox3FF6_9000 Ox3FF6_AFFF 8 KB EMAC
Data Ox3FF6_B000 Ox3FF6_BFFF 4KB TWAI
Data Ox3FF6_C000 Ox3FF6_CFFF 4 KB MCPWMA1
Data Ox3FF6_D000 Ox3FF6_DFFF 4 KB 1251
Data Ox3FF6_E000 Ox3FF6_EFFF 4 KB UART2
Data Ox3FF6_F000 Ox3FF6_FFFF 4 KB Reserved
Data Ox3FF7_0000 Ox3FF7_OFFF 4 KB Reserved

Ox3FF7_1000 Ox3FF7_4FFF 16 KB Reserved
Data Ox3FF7_5000 Ox3FF7_5FFF 4 KB RNG

Ox3FF7_6000 Ox3FF7_FFFF 40 KB Reserved

Notice:

e Peripherals accessed by the CPU via Ox3FF40000 ~ Ox3FF7FFFF address space (DPORT address) can also
be accessed via 0x60000000 ~ Ox6003FFFF (AHB address). (0x3FF40000 + n) address and (0x60000000
+ n) address access the same content, where n = 0 ~ Ox3FFFF.

e The CPU can access peripherals via DPORT address more efficiently than via AHB address. However,
DPORT address is characterized by speculative reads, which means it cannot guarantee that each read is
valid. In addition, DPORT address will upset the order of r/w operations on the bus to improve performance,
which may cause programs that have strict requirements on the r/w order to crash. On the other hand, using
AHB address to read FIFO registers will cause unpredictable errors. To address above issues please strictly
follow the instructions documented in ESP32 ECO and Workarounds for Bugs, specifically sections 3.3, 3.10,
3.16, and 3.17.

1.3.5.1 Asymmetric PID Controller Peripheral

There are two PID Controllers in the system. They serve the PRO_CPU and the APP_CPU, respectively. The
PRO_CPU and the APP_CPU can only access their own PID Controller and not that of their counterpart.
Each CPU uses the same memory range Ox3FF1_FO00 ~ 3FF1_FFFF to access its own PID Controller.

1.3.5.2 Non-Contiguous Peripheral Memory Ranges

The SDIO Slave peripheral consists of three parts and the two CPUs use non-contiguous addresses to ac-
cess these. The three parts are accessed at the address ranges Ox3FF4_B000 ~ 3FF4_BFFF, Ox3FF5_5000 ~

Espressif Systems 32
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/sites/default/files/documentation/eco_and_workarounds_for_bugs_in_esp32_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

1 System and Memory

3FF5_5FFF and 0x3FF5_8000 ~ 3FF5_8FFF of each CPU'’s data bus. Similarly to other peripherals, access to this
peripheral is identical for both CPUs.

1.3.5.3 Memory Speed

The ROM as well as the SRAM are both clocked from CPU_CLK and can be accessed by the CPU in a single cycle.
The RTC FAST memory is clocked from the APB_CLOCK and the RTC SLOW memory from the FAST_CLOCK,
SO access to these memories may be slower. DMA uses the APB_CLK to access memory.

Internally, the SRAM is organized in 32K-sized banks. Each CPU and DMA channel can simultaneously access
the SRAM at full speed, provided they access addresses in different memory banks.

Espressif Systems 33 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

2 Interrupt Matrix (INTERRUPT)

2 Interrupt Matrix (INTERRUPT)

2.1 Overview
The Interrupt Matrix embedded in the ESP32 independently allocates peripheral interrupt sources to the two CPUs’
peripheral interrupts. This configuration is made to be highly flexible in order to meet many different needs.
2.2 Features
e Accepts 71 peripheral interrupt sources as input.

e Generates 26 peripheral interrupt sources per CPU as output (52 total).
e CPU NMI Interrupt Mask.
e Queries current interrupt status of peripheral interrupt sources.

The structure of the Interrupt Matrix is shown in Figure 2-1.

PRO_CPU Peripheral Interrupt Configuration Register

PRO_CPU NMI Interrupt Mask

APP_CPU Peripheral Interrupt Configuration Register

v

APP_CPU NMI Interrupt Mask

PRO_CPU Peripheral Interrupt

v

Peripheral Interrupt Source

Interrupt Matrix
APP_CPU Peripheral Interrupt

v

PRO_CPU Peripheral Interrupt Source Status Register

»
»

APP_CPU Peripheral Interrupt Source Status Register

»
|

Figure 2-1. Interrupt Matrix Structure

2.3 Functional Description

2.3.1 Peripheral Interrupt Source
ESP32 has 71 peripheral interrupt sources in total. All peripheral interrupt sources are listed in table 2-1. 67 of 71
ESP32 peripheral interrupt sources can be allocated to either CPU.

The four remaining peripheral interrupt sources are CPU-specific, two per CPU. GPIO_INTERRUPT_PRO and
GPIO_INTERRUPT_PRO_NMI can only be allocated to PRO_CPU. GPIO_INTERRUPT_APP and GPIO_INTERRUPT
_APP_NMI can only be allocated to APP_CPU. As a result, PRO_CPU and APP_CPU each have 69 peripheral in-
terrupt sources.

Espressif Systems 34 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

SOBQP&8] UOBIUaLWNO0(JIWGNS

SWe1sAg Jissaids]

Ge

(0'G uoisisp) INHL 2£dST

Table 2-1. PRO_CPU, APP_CPU Interrupt Configuration

PRO_CPU

APP_CPU

Peripheral Interrupt
Configuration Register

Peripheral Interrupt Source

Status Register

z
@

Name

z
@

Status Register

Peripheral Interrupt
Configuration Register

Bit Name Name Bit
DPORT_PRO_MAC_INTR_MAP_REG 0 0 MAC_INTR 0 0 DPORT_APP_MAC_INTR_MAP_REG
DPORT_PRO_MAC_NMI_MAP_REG 1 1 MAC_NMI 1 1 DPORT_APP_MAC_NMI_MAP_REG
DPORT_PRO_BB_INT_MAP_REG 2 2 BB_INT 2 2 DPORT_APP_BB_INT_MAP_REG
DPORT_PRO_BT_MAC_INT_MAP_REG 3 3 BT_MAC_INT 3 3 DPORT_APP_BT_MAC_INT_MAP_REG
DPORT_PRO_BT_BB_INT_MAP_REG 4 4 BT_BB_INT 4 4 DPORT_APP_BT_BB_INT_MAP_REG
DPORT_PRO_BT_BB_NMI_MAP_REG 5 5 BT_BB_NMI 5 5 DPORT_APP_BT_BB_NMI_MAP_REG
DPORT_PRO_RWBT_IRQ_MAP_REG 6 6 RWBT_IRQ 6 6 DPORT_APP_RWBT_IRQ_MAP_REG
DPORT_PRO_RWBLE_IRQ_MAP_REG 7 7 RWBLE_IRQ 7 7 DPORT_APP_RWBLE_IRQ_MAP_REG
DPORT_PRO_RWBT_NMI_MAP_REG 8 8 RWBT_NMI 8 8 DPORT_APP_RWBT_NMI_MAP_REG
DPORT_PRO_RWBLE_NMI_MAP_REG 9 9 RWBLE_NMI 9 9 DPORT_APP_RWBLE_NMI_MAP_REG
DPORT_PRO_SLCO_INTR_MAP_REG 10 10 SLCO_INTR 10 10 DPORT_APP_SLCO_INTR_MAP_REG
DPORT_PRO_SLC1_INTR_MAP_REG 11 1 SLC1_INTR hh! 11 DPORT_APP_SLC1_INTR_MAP_REG
DPORT_PRO_UHCIO_INTR_MAP_REG 12 12 UHCIO_INTR 12 12 DPORT_APP_UHCIO_INTR_MAP_REG
DPORT_PRO_UHCI1_INTR_MAP_REG 13 13 UHCI1_INTR 13 13 DPORT_APP_UHCI1_INTR_MAP_REG
DPORT_PRO_TG_TO_LEVEL_INT_MAP_REG 14 14 TG_TO_LEVEL_INT 14 14 DPORT_APP_TG_TO_LEVEL_INT_MAP_REG
DPORT_PRO_TG_T1_LEVEL_INT_MAP_REG 15 DPORT_PRO.INTR_STATUS. REG.0_REG 16 TG_T1_LEVEL_INT 15 DPORT_APP._INTR_STATUS. REG._0.REG 15 DPORT_APP_TG_T1_LEVEL_INT_MAP_REG
DPORT_PRO_TG_WDT_LEVEL_INT_MAP_REG 16 - - - - T 16 TG_WDT_LEVEL_INT 16 - - - - 16 DPORT_APP_TG_WDT_LEVEL_INT_MAP_REG
DPORT_PRO_TG_LACT_LEVEL_INT_MAP_REG 17 17 TG_LACT_LEVEL_INT 17 17 DPORT_APP_TG_LACT_LEVEL_INT_MAP_REG
DPORT_PRO_TG1_TO_LEVEL_INT_MAP_REG 18 18 TG1_TO_LEVEL_INT 18 18 DPORT_APP_TG1_TO_LEVEL_INT_MAP_REG
DPORT_PRO_TG1_T1_LEVEL_INT_MAP_REG 19 19 TG1_T1_LEVEL_INT 19 19 DPORT_APP_TG1_T1_LEVEL_INT_MAP_REG
DPORT_PRO_TG1_WDT_LEVEL_INT_MAP_REG 20 20 TG1_WDT_LEVEL_INT 20 20 DPORT_APP_TG1_WDT_LEVEL_INT_MAP_REG
DPORT_PRO_TG1_LACT_LEVEL_INT_MAP_REG 21 21 TG1_LACT_LEVEL_INT 21 21 DPORT_APP_TG1_LACT_LEVEL_INT_MAP_REG
DPORT_PRO_GPIO_INTERRUPT_MAP_REG 22 22 GPIO_INTERRUPT_PRO [GPIO_INTERRUPT_APP 22 22 DPORT_APP_GPIO_INTERRUPT_MAP_REG
DPORT_PRO_GPIO_INTERRUPT_NMI_MAP_REG 23 23 GPIO_INTERRUPT_PRO_NMI [GPIO_INTERRUPT_APP_NMI 23 23 DPORT_APP_GPIO_INTERRUPT_NMI_MAP_REG
DPORT_PRO_CPU_INTR_FROM_CPU_O_MAP_REG 24 24 CPU_INTR_FROM_CPU_O 24 24 DPORT_APP_CPU_INTR_FROM_CPU_0_MAP_REG
DPORT_PRO_CPU_INTR_FROM_CPU_1_MAP_REG 25 25 CPU_INTR_FROM_CPU_1 25 25 DPORT_APP_CPU_INTR_FROM_CPU_1_MAP_REG
DPORT_PRO_CPU_INTR_FROM_CPU_2_MAP_REG 26 26 CPU_INTR_FROM_CPU_2 26 26 DPORT_APP_CPU_INTR_FROM_CPU_2_MAP_REG
DPORT_PRO_CPU_INTR_FROM_CPU_3_MAP_REG 27 27 CPU_INTR_FROM_CPU_3 27 27 DPORT_APP_CPU_INTR_FROM_CPU_3_MAP_REG
DPORT_PRO_SPI_INTR_0_MAP_REG 28 28 SPILINTR_O 28 28 DPORT_APP_SPI_INTR_O_MAP_REG
DPORT_PRO_SPI_INTR_1_MAP_REG 29 29 SPILLINTR_1 29 29 DPORT_APP_SPI_INTR_1_MAP_REG
DPORT_PRO_SPI_INTR_2_MAP_REG 30 30 SPI_INTR_2 30 30 DPORT_APP_SPI_INTR_2_MAP_REG
DPORT_PRO_SPI_INTR_3_MAP_REG 31 31 SPI_INTR_3 31 31 DPORT_APP_SPI_INTR_3_MAP_REG
DPORT_PRO_I2SO_INT_MAP_REG 0 32 1280_INT 32 0 DPORT_APP_I2SO_INT_MAP_REG
DPORT_PRO_I2S1_INT_MAP_REG 1 33 1281_INT 33 1 DPORT_APP_I2S1_INT_MAP_REG
DPORT_PRO_UART_INTR_MAP_REG 2 34 UART_INTR 34 2 DPORT_APP_UART_INTR_MAP_REG
DPORT_PRO_UART1_INTR_MAP_REG 3 35 UART1_INTR 35 3 DPORT_APP_UART1_INTR_MAP_REG
DPORT_PRO_UART2_INTR_MAP_REG 4 36 UART2_INTR 36 4 DPORT_APP_UART2_INTR_MAP_REG
DPORT_PRO_SDIO_HOST_INTERRUPT_MAP_REG 5 37 SDIO_HOST_INTERRUPT 37 5 DPORT_APP_SDIO_HOST_INTERRUPT_MAP_REG
DPORT_PRO_EMAC_INT_MAP_REG 6 38 EMAC_INT 38 6 DPORT_APP_EMAC_INT_MAP_REG
DPORT_PRO_PWMO_INTR_MAP_REG 7 39 PWMO_INTR 39 7 DPORT_APP_PWMO_INTR_MAP_REG
DPORT_PRO_PWM1_INTR_MAP_REG 8 40 PWM1_INTR 40 8 DPORT_APP_PWM1_INTR_MAP_REG
Reserved 9 4 Reserved 4 9 Reserved
Reserved 10 DPORT_PRO_INTR_STATUS_REG_1_REG 42 Reserved 42 DPORT_APP_INTR_STATUS_REG_1_REG 10 Reserved
DPORT_PRO_LEDC_INT_MAP_REG 11 43 LEDC_INT 43 11 DPORT_APP_LEDC_INT_MAP_REG
DPORT_PRO_EFUSE_INT_MAP_REG 12 44 EFUSE_INT 44 12 DPORT_APP_EFUSE_INT_MAP_REG
DPORT_PRO_TWAI_INT_MAP_REG 13 45 TWAI_INT 45 13 DPORT_APP_TWAI_INT_MAP_REG
DPORT_PRO_RTC_CORE_INTR_MAP_REG 14 46 RTC_CORE_INTR 46 14 DPORT_APP_RTC_CORE_INTR_MAP_REG
DPORT_PRO_RMT_INTR_MAP_REG 15 47 RMT_INTR 47 15 DPORT_APP_RMT_INTR_MAP_REG
DPORT_PRO_PCNT_INTR_MAP_REG 16 48 PCNT_INTR 48 16 DPORT_APP_PCNT_INTR_MAP_REG
DPORT_PRO_I2C_EXTO_INTR_MAP_REG 17 49 12C_EXTO_INTR 49 17 DPORT_APP_I2C_EXTO_INTR_MAP_REG
DPORT_PRO_I2C_EXT1_INTR_MAP_REG 18 50 12C_EXT1_INTR 50 18 DPORT_APP_I2C_EXT1_INTR_MAP_REG
DPORT_PRO_RSA_INTR_MAP_REG 19 51 RSA_INTR 51 19 DPORT_APP_RSA_INTR_MAP_REG
DPORT_PRO_SPI1_DMA_INT_MAP_REG 20 52 SPI1_DMA_INT 52 20 DPORT_APP_SPI1_DMA_INT_MAP_REG

14

(LdNYYILNI) Xure dnusiul

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

SOBQP&8] UOBIUaLWNO0(JIWGNS

SWe1sAg Jissaids]

9¢

(0’ uoIsisN) INHL 28dS3

PRO_CPU

APP_CPU

Peripheral Interrupt

Status Register

Peripheral Interrupt Source

Status Register

Peripheral Interrupt

Configuration Register Bit Name No. Name No. Name Bit Configuration Register
DPORT_PRO_SPI2_DMA_INT_MAP_REG 21 53 SPI2_DMA_INT 53 21 DPORT_APP_SPI2_DMA_INT_MAP_REG
DPORT_PRO_SPI3_DMA_INT_MAP_REG 22 54 SPI3_DMA_INT 54 22 DPORT_APP_SPI3_DMA_INT_MAP_REG

DPORT_PRO_WDG_INT_MAP_REG 23 55 WDG_INT 55 23 DPORT_APP_WDG_INT_MAP_REG
DPORT_PRO_TIMER_INT1_MAP_REG 24 56 TIMER_INT1 56 24 DPORT_APP_TIMER_INT1_MAP_REG
DPORT_PRO_TIMER_INT2_MAP_REG 25 57 TIMER_INT2 57 25 DPORT_APP_TIMER_INT2_MAP_REG

DPORT_PRO_TG_TO_EDGE_INT_MAP_REG 26 DPORT_PRO_INTR_STATUS_REG_1_REG 58 TG_TO_EDGE_INT 58 DPORT_APP_INTR_STATUS_REG_1_REG 26 DPORT_APP_TG_TO_EDGE_INT_MAP_REG
DPORT_PRO_TG_T1_EDGE_INT_MAP_REG 27 59 TG_T1_EDGE_INT 59 27 DPORT_APP_TG_T1_EDGE_INT_MAP_REG
DPORT_PRO_TG_WDT_EDGE_INT_MAP_REG 28 60 TG_WDT_EDGE_INT 60 28 DPORT_APP_TG_WDT_EDGE_INT_MAP_REG
DPORT_PRO_TG_LACT_EDGE_INT_MAP_REG 29 61 TG_LACT_EDGE_INT 61 29 DPORT_APP_TG_LACT_EDGE_INT_MAP_REG
DPORT_PRO_TG1_TO_EDGE_INT_MAP_REG 30 62 TG1_TO_EDGE_INT 62 30 DPORT_APP_TG1_TO_EDGE_INT_MAP_REG
DPORT_PRO_TG1_T1_EDGE_INT_MAP_REG 31 63 TG1_T1_EDGE_INT 63 31 DPORT_APP_TG1_T1_EDGE_INT_MAP_REG
DPORT_PRO_TG1_WDT_EDGE_INT_MAP_REG 0 64 TG1_WDT_EDGE_INT 64 0 DPORT_APP_TG1_WDT_EDGE_INT_MAP_REG
DPORT_PRO_TG1_LACT_EDGE_INT_MAP_REG 1 65 TG1_LACT_EDGE_INT 65 1 DPORT_APP_TG1_LACT_EDGE_INT_MAP_REG
DPORT_PRO_MMU_IA_INT_MAP_REG 2 DPORT_PRO_INTR_STATUS_REG_2_REG 66 MMU_IA_INT 66 DPORT_APP_INTR_STATUS_REG_2_REG 2 DPORT_APP_MMU_IA_INT_MAP_REG
DPORT_PRO_MPU_IA_INT_MAP_REG 3 67 MPU_IA_INT 67 3 DPORT_APP_MPU_IA_INT_MAP_REG
DPORT_PRO_CACHE_IA_INT_MAP_REG 4 68 CACHE_IA_INT 68 4 DPORT_APP_CACHE_IA_INT_MAP_REG

14

(LdNYYILNI) Xure dnusiul

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

2 Interrupt Matrix (INTERRUPT)

2.3.2 CPU Interrupt
Both of the two CPUs (PRO and APP) have 32 interrupts each, of which 26 are peripheral interrupts. All interrupts
in a CPU are listed in Table 2-2.

Table 2-2. CPU Interrupts

No. Category Type Priority Level
0 Peripheral Level-Triggered 1
1 Peripheral Level-Triggered 1
2 Peripheral Level-Triggered 1
3 Peripheral Level-Triggered 1
4 Peripheral Level-Triggered 1
5 Peripheral Level-Triggered 1
6 Internal Timer.0 1
7 Internal Software 1
8 Peripheral Level-Triggered 1
9 Peripheral Level-Triggered 1
10 Peripheral Edge-Triggered 1
11 Internal Profiling 3
12 Peripheral Level-Triggered 1
13 Peripheral Level-Triggered 1
14 Peripheral NMI NMI
156 Internal Timer.1 3
16 Internal Timer.2 5
17 Peripheral Level-Triggered 1
18 Peripheral Level-Triggered 1
19 Peripheral Level-Triggered 2
20 Peripheral Level-Triggered 2
21 Peripheral Level-Triggered 2
22 Peripheral Edge-Triggered 3
23 Peripheral Level-Triggered 3
24 Peripheral Level-Triggered 4
25 Peripheral Level-Triggered 4
26 Peripheral Level-Triggered 5
27 Peripheral Level-Triggered 3
28 Peripheral Edge-Triggered 4
29 Internal Software 3
30 Peripheral Edge-Triggered 4
31 Peripheral Level-Triggered 5

2.3.3 Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU
In this section:

e Source_X stands for any particular peripheral interrupt source.

e PRO_X_MAP_REG (or APP_X_MAP_REG) stands for any particular peripheral interrupt configuration register

Espressif Systems 37 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

2 Interrupt Matrix (INTERRUPT)

of the PRO_CPU (or APP_CPU). The peripheral interrupt configuration register corresponds to the peripheral
interrupt source Source_X. In Table 2-1 the registers listed under “PRO_CPU (APP_CPU) - Peripheral Interrupt
Configuration Register” correspond to the peripheral interrupt sources listed in “Peripheral Interrupt Source
- Name”.

¢ Interrupt_P stands for CPU peripheral interrupt, numbered as Num_P. Num_P can take the ranges O ~ 5, 8
~10,12~ 14,17 ~ 28, 30 ~ 31.

¢ Interrupt_| stands for the CPU internal interrupt numbered as Num_l. Num_| can take values 6, 7, 11, 15,
16, 29.

Using this terminology, the possible operations of the Interrupt Matrix controller can be described as follows:

¢ Allocate peripheral interrupt source Source_X to CPU (PRO_CPU or APP_CPU)
Set PRO_X_MAP_REG or APP_X_MAP_REG to Num_P. Num_P can be any CPU peripheral interrupt num-
ber. CPU interrupts can be shared between multiple peripherals (see below).

¢ Disable peripheral interrupt source Source_X for CPU (PRO_CPU or APP_CPU)
Set PRO_X_MAP_REG or APP_X _MAP_REG for peripheral interrupt source to any Num_|. The specific
choice of internal interrupt number does not change behaviour, as none of the interrupt numbered as Num_|
is connected to either CPU.

¢ Allocate multiple peripheral sources Source_Xn ORed to PRO_CPU (APP_CPU) peripheral interrupt
Set multiple PRO_Xn_MAP_REG (APP_Xn_MAP_REG) to the same Num_P. Any of these peripheral interrupts
will trigger CPU Interrupt_P.

2.3.4 CPU NMI Interrupt Mask

The Interrupt Matrix temporarily masks all peripheral interrupt sources allocated to PRO_CPU’s (or APP_CPU’s)
NMI interrupt, if it receives the signal PRO_CPU NMI Interrupt Mask (or APP_CPU NMI Interrupt Mask) from the
peripheral PID Controller, respectively.

2.3.5 Query Current Interrupt Status of Peripheral Interrupt Source
The current interrupt status of a peripheral interrupt source can be read via the bit value in PRO_INTR_STATUS_REG_n
(APP_INTR_STATUS_REG_n), as shown in the mapping in Table 2-1.

2.4 Registers
The interrupt matrix registers are part of the DPORT registers and are described in Section 5.4 in Chapter 5 DPort
Registers.

Espressif Systems 38 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

3 Reset and Clock

3.1 System Reset

3.1.1 Introduction
The ESP32 has three reset levels: CPU reset, Core reset, and System reset. None of these reset levels clear the
RAM. Figure 3-1 shows the subsystems included in each reset level.

System

Core

Figure 3-1. System Reset

e CPU reset: Only resets the registers of one or both of the CPU cores.

e Core reset: Resets all the digital registers, including CPU cores, external GPIO and digital GPIO. The RTC is
not reset.

e System reset: Resets all the registers on the chip, including those of the RTC.

3.1.2 Reset Source

While most of the time the APP_CPU and PRO_CPU will be reset simultaneously, some reset sources are able to
reset only one of the two cores. The reset reason for each core can be looked up individually: the PRO_CPU reset
reason will be stored in RTC_CNTL_RESET_CAUSE_PROCPU, the reset reason for the APP_CPU in
RTC_CNTL_RESET_CAUSE_APPCPU. Table 3-1 shows the possible reset reason values that can be read from
these registers.

Table 3-1. PRO_CPU and APP_CPU Reset Reason Values

PRO | APP | Source Reset Type Note

0x01 | 0x01 | Chip Power On Reset System Reset | -

0x10 | Ox10 | RWDT System Reset System Reset | See WDT Chapter.

OxOF | OxOF | Brown Out Reset System Reset | See Power Management Chapter.
0x03 | 0x03 | Software System Reset | Core Reset Configure RTC_CNTL_SW_SYS_RST register.
0x05 | Ox05 | Deep Sleep Reset Core Reset See Power Management Chapter.

0x07 | OxO7 | MWDTO Global Reset Core Reset See WDT Chapter.

Espressif Systems 39 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

PRO | APP | APP Source Reset Type Note

0x08 | 0x08 | MWDT1 Global Reset Core Reset See WDT Chapter.

0x09 | 0x09 | RWDT Core Reset Core Reset See WDT Chapter.

0x0B | - MWDTO CPU Reset CPU Reset See WDT Chapter.

0x0C | - Software CPU Reset CPU Reset Configure RTC_CNTL_SW_APPCPU_RST register.

- 0x0B | MWDT1 CPU Reset CPU Reset See WDT Chapter.

- 0x0C | Software CPU Reset CPU Reset Configure RTC_CNTL_SW_APPCPU_RST register.

0x0D | OxOD | RWDT CPU Reset CPU Reset See WDT Chapter.
Indicates that the PRO CPU has independently
- OxE PRO CPU Reset CPU Reset reset the APP CPU by configuring the

DPORT_APPCPU_RESETTING register.

3.2 System Clock

3.2.1 Introduction
The ESP32 integrates multiple clock sources for the CPU cores, the peripherals and the RTC. These clocks can
be configured to meet different requirements. Figure 3-2 shows the system clock structure.

CLK MANAGEMENT |

|
PLL CLK |
‘

APLL CLK |
RC_FAST_CLK |

_ w CPU_CLK

CPU

|
XTL_CLK |
|

APB GEN | APB_CLK

] REF 1 REF_TICK 1 7
GEN | !

WIFI
BT

p LOW_POWER_CLK 3
CLK GEN |
x LEDC_SCLK |
2 »
= i Peri
APLL_CLK |
»DIV2) : PLL D2_CLK :
RC_SLOW_CLK %
XTL32K_CLK | 2 RTC_SLOW_CLK 1
RC_FAST_DIV_CLK (% o,
‘ 2 |
, X RTC
s RTC_FAST_CLK
e >
(%]
:
XTAL_DIV_CLK

Figure 3-2. System Clock

Espressif Systems 40 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

3.2.2 Clock Source
The ESP32 can use an external crystal oscillator, an internal PLL or an oscillating circuit as a clock source. Specif-
ically, the clock sources available are:

¢ High Speed Clocks

- PLL_CLK s an internal PLL clock with a frequency of 320 MHz or 480 MHz.

- XTL_CLKis a clock signal generated using an external crystal with a frequency range of 2 ~ 40 MHz.
¢ | ow Power Clocks

- XTL32K_CLK is a clock generated using an external crystal with a frequency of 32 KHz.

- RC_FAST_CLK is an internal clock with a default frequency of 8 MHz. This frequency is adjustable.

— RC_FAST_DIV_CLK is divided from RC_FAST_CLK. lts frequency is (RC_FAST_CLK / 256). With the
default RC_FAST_CLK frequency of 8 MHz, this clock runs at 31.250 KHz.

- RC_SLOW_CLK is an internal low power clock with a default frequency of 150 KHz. This frequency is
adjustable.

e Audio Clock

— APLL_CLK s an internal Audio PLL clock with a frequency range of 16 ~ 128 MHz.

3.2.3 CPU Clock

As Figure 3-2 shows, CPU_CLK is the master clock for both CPU cores. CPU_CLK clock can be as high as 240
MHz when the CPU is in high performance mode. Alternatively, the CPU can run at lower frequencies to reduce
power consumption.

The CPU_CLK clock source is determined by the RTC_CNTL_SOC_CLK_SEL register. PLL_CLK, APLL_CLK,
RC_FAST_CLK, and XTL_CLK can be set as the CPU_CLK source; see Table 3-2 and 3-3.

Table 3-2. CPU_CLK Source

RTC_CNTL_SOC_CLK_SEL Value | Clock Source
0 XTL_CLK

1 PLL_CLK

2 RC_FAST_CLK
3 APLL_CLK

Table 3-3. CPU_CLK Derivation

Clock Source *SEL_O | *SEL_1 | CPU Clock Frequency
XTL_CLK 0 - CPU_CLK = XTL_CLK / (SYSCON_PRE_DIV_CNT+1)
CPU_CLK=PLL_CLK/ 4
PLL_CLK (320 MHz) | 1 0 .
CPU_CLK frequency is 80 MHz
CPU_CLK =PLL CLK/2
PLL_CLK (320 MHz) | 1 1 .
CPU_CLK frequency is 160 MHz
CPU_CLK=PLL_CLK/2
PLL_CLK (480 MHz) | 1 2 ,
CPU_CLK frequency is 240 MHz
RC_FAST_CLK 2 - CPU_CLK = RC_FAST_CLK / (SYSCON_PRE_DIV_CNT+1)
APLL_CLK 3 0 CPU_CLK = APLL_CLK/ 4
Espressif Systems 41 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

APLL_CLK |3

| 1

‘ CPU_CLK = APLL_CLK /2

*SEL_O: The value of register RTC_CNTL_SOC_CLK_SEL

*SEL_1: The value of register CPU_CPUPERIOD_SEL

3.2.4 Peripheral Clock
Peripheral clocks include APB_CLK, REF_TICK, LEDC_SCLK, APLL_CLK, and PLL_F160M_CLK.
Table 3-4 shows which clocks can be used by which peripherals.

3.2.4.1

Table 3-4. Peripheral Clock Usage

Peripherals

APB_CLK

REF_TICK

LEDC_SCLK | APLL_CLK

PLL_F160M_CLK

EMAC

TIMG

12S

UART

RMT

LED PWM

PWM

12C

SPI

PCNT

eFuse Controller

SDIO Slave

SDMMC

<|<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<]|x<

ZlZz|Zz|Zz|Z2|Z2|Z2|<|<|<|Z2|Z2|=Z2

z|IZzlz|Zz|IZz|Zz|Z2|<|Z2|Z2|Z2|Z2|Z
zlzlZz|Zz|IZz|Zz|Z2|Z2|1Z2|Z2|X|Z2|<

zlz|z|z|z|Zz|<|Zz|Zz|Z2|<|Z2|Z2

APB_CLK

The APB_CLK frequency is determined by CPU_CLK source, as detailed in Table 3-5.

3.2.4.2 REF_TICK

REF_TICK is derived from APB_CLK. The APB_CLK frequency is determined by CPU_CLK source. The REF_TICK
frequency should be fixed. When CPU_CLK source changes, users need to make sure the REF_TICK frequency

Table 3-5. APB_CLK

CPU_CLK Source

APB_CLK Frequency

PLL_CLK 80 MHz
APLL_CLK CPU_CLK /2
XTL_CLK CPU_CLK
RC_FAST_CLK CPU_CLK

remains unchanged by setting a correct divider value.

Clock divider registers are shown in Table 3-6.

Espressif Systems

42

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

Table 3-6. REF_TICK

CPU_CLK Source | APB_CLK Frequency | REF_TICK Frequency

PLL_CLK 80 MHz APB_CLK / (SYSCON_PLL_TICK_NUM+1)
APLL_CLK CPU_CLK /2 APB_CLK / (SYSCON_APLL_TICK_NUM+1)
XTL_CLK CPU_CLK APB_CLK / (SYSCON_XTAL_TICK_NUM+1)
FOSC_CLK CPU_CLK APB_CLK / (SYSCON_CK8M_TICK_NUM+1)

For example, when CPU_CLK source is PLL_CLK and users need to keep the REF_TICK frequency at 1 MHz,
then they should set SYSCON_PLL_TICK_NUM to 79 (0x4F) so that the REF_TICK frequency = 80 MHz / (79+1)
=1 MHz.

3.2.4.3 LEDC_SCLK Source

The LEDC_SCLK clock source is selected by the LEDC_APB_CLK_SEL register, as shown in Table 3-7.

Table 3-7. LEDC_SCLK Derivation

LEDC_APB_CLK_SEL Value | LEDC_SCLK Source
0 RC_FAST_CLK
1 APB_CLK

3.2.4.4 APLL_SCLK Source

The APLL_CLK is sourced from PLL_CLK, with its output frequency configured using the APLL configuration
registers.

3.2.4.5 PLL_F160M_CLK Source

PLL_F160M_CLK s divided from PLL_CLK by automatically adjusting the clock division and its frequency is always
160 MHz.

3.2.4.6 Clock Source Considerations

Most peripherals will operate using the APB_CLK frequency as a reference. When this frequency changes, the
peripherals will need to update their clock configuration to operate at the same frequency after the change. Pe-
ripherals accessing REF_TICK can continue operating normally when switching clock sources, without changing
clock source. Please see Table 3-4 for details.

The LED PWM module can use RC_FAST_CLK as a clock source when APB_CLK is disabled. In other words,
when the system is in low-power consumption mode (see Power Management Chapter), normal peripherals will
be halted (APB_CLK is turned off), but the LED PWM can work normally via RC_FAST_CLK.

3.2.5 Wi-Fi BT Clock
Wi-Fi and BT can only operate if APB_CLK uses PLL_CLK as its clock source. Suspending PLL_CLK requires
Wi-Fi and BT to both have entered low-power consumption mode first.

For LOW_POWER_CLK, one of RC_SLOW_CLK, RTC_SLOW_CLK, RC_FAST_CLK or XTL_CLK can be selected
as the low-power consumption mode clock source for Wi-Fi and BT.

Espressif Systems 43 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

3.2.6 RTC Clock
The clock sources of RTC_SLOW_CLK and RTC_FAST_CLK are low-frequency clocks. The RTC module can
operate when most other clocks are stopped.

RTC_SLOW_CLK is used to clock the Power Management module. It can be sourced from RC_SLOW_CLK,
XTL32K_CLK or RC_FAST_DIV_CLK.

RTC_FAST_CLK is used to clock the On-chip Sensor module. It can be sourced from a divided XTL_CLK or from
RC_FAST_CLK.

3.2.7 Audio PLL

The operation of audio and other time-critical data-transfer applications requires highly-configurable, low-jitter, and
accurate clock sources. The clock sources derived from system clocks that serve digital peripherals may carry
jitter and, therefore, they do not support a high-precision clock frequency setting.

Providing an integrated precision clock source can minimize system cost. To this end, ESP32 integrates an audio
PLL. The Audio PLL formula is as follows:

Sxtar(SdM2 + Sdzirgﬂ + 3‘2’:20 +4)

Jou = 2(odiv + 2)

The parameters of this formula are defined below:
e fua: the frequency of the crystal oscillator, usually 40 MHz;
e sdmO: the value is O ~ 255;
e sdm1: the value is O ~ 255;
® sdm2: the value is O ~ 63;
® odiv: the value is O ~ 31;
The operating frequency range of the numerator is 350 MHz ~ 500 MHz:

sdm1 sdmO

350MHz < fxta|(sdm2 + T + W

+4) < 500M Hz

Please note that sdm1 and sdmO are not available on revisionO of ESP32. Please consult the silicon revision in
ECO and Workarounds for Bugs in ESP32 for further details.

Audio PLL can be manually enabled or disabled via registers RTC_CNTL_PLLA_FORCE_PU and RTC_CNTL_PLLA
_FORCE_PD, respectively. Disabling it takes priority over enabling it. When RTC_CNTL_PLLA_FORCE_PU and
RTC_CNTL_PLLA_FORCE_PD are 0, PLL will follow the state of the system, i.e., when the system enters sleep
mode, PLL will be disabled automatically; when the system wakes up, PLL will be enabled automatically.

3.3 Register Summary
The addresses in this section are relative to the SYSCON base address provided in Table 1-6 Peripheral Address
Meapping in Chapter 1 System and Memory.

Name ‘ Description Address | Access

Configuration register

SYSCON_SYSCLK_CONF_REG Configures system clock frequency 0x0000 | R/W

SYSCON_XTAL_TICK_CONF_REG Configures the divider value of REF_TICK 0x0004 | R/W
Espressif Systems 44 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

http://espressif.com/sites/default/files/documentation/eco_and_workarounds_for_bugs_in_esp32_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

Name Description Address | Access
SYSCON_PLL_TICK_CONF_REG Configures the divider value of REF_TICK 0x0008 | R/W
SYSCON_CK8M_TICK_CONF_REG Configures the divider value of REF_TICK 0x000C | R/W
SYSCON_APLL_TICK_CONF_REG Configures the divider value of REF_TICK 0x003C | R/W
Chip revision register

SYSCON_DATE_REG Chip revision register 0x007C | R/W

3.4 Registers
The addresses in this section are relative to the SYSCON base address provided in Table 1-6 Peripheral Address
Mapping in Chapter 1 System and Memory.

Register 3.1. SYSCON_SYSCLK_CONF_REG (0x0000)

S
<§/
Q{O/
b\ %/
@‘@ o}
& 2
A S
‘31 10|9 0‘
\oooooooooooooooooooooo| %) \Reset

SYSCON_PRE_DIV_CNT Configures the divider value of CPU_CLK when the source of CPU_CLK
is XTL_CLK or RC_FAST_CLK. The value range is OxO ~ Ox3FF. CPU_CLK = XTL_CLK (or
RC_FAST_CLK) / (the value of this field +1). (R/W)

Register 3.2. SYSCON_XTAL_TICK_CONF_REG (0x0004)

%\9
N
&\Q
?\//
N
& S
& 2
\§)
B o[|
[0 o 000 0000O0GO0O0OOD0OOO0ODO0O0O0O0O0 0 39 |Reset

SYSCON_XTAL_TICK_NUM Configures the divider value of REF_TICK when the source of APB_CLK
is XTL_CLK. The value range is Ox0O ~ OxFF. REF_TICK = APB_CLK /(the value of this field + 1).
RW)

Espressif Systems 45 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

Register 3.3. SYSCON_PLL_TICK_CONF_REG (0x0008)

R
\P/
S
&
.
& S

& 2

¢ S
B o[- |
‘ o 79 ‘ Reset

SYSCON_PLL_TICK_NUM Configures the divider value of REF_TICK when the source of APB_CLK
is PLL_CLK. The value range is Ox0O ~ OxFF. REF_TICK = APB_CLK /(the value of this field + 1).

(R/W)
Register 3.4. SYSCON_CK8M_TICK_CONF_REG (0x000C)
Q
S
<0
@/
5 &
@‘\\Q) OJOO
& 2
\oooooooooooooooooooooooo 11 \Reset

SYSCON_CK8M_TICK_NUM Configures the divider value of REF_TICK when the source of
APB_CLK is FOSC_CLK. The value range is Ox0 ~ OxFF. REF_TICK = APB_CLK /(the value of
this field + 1). (R/W)

Register 3.5. SYSCON_APLL_TICK_CONF_REG (0x003C)

S
Q
\L_/
&\C)
\>//
S\
& S
& 2
A S
‘ 31 8|7 0 ‘
‘ o o o o o o o o o o o o o0 o o o o o0 o o0 o0 o0 o0o0 99 ‘Reset

SYSCON_APLL_TICK_NUM Configures the divider value of REF_TICK when the source of APB_CLK
is APLL_CLK. The value range is Ox0 ~ OxFF. REF_TICK = APB_CLK /(the value of this field + 1).

(R/W)

Espressif Systems 46 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

3 Reset and Clock

Register 3.6. SYSCON_DATE_REG (0x007C)

E 3

‘ 0x16042000 \ Reset

SYSCON_DATE Chip revision register. For more information see £SP32 Series SoC Errata. (R/W)

Espressif Systems 47 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/sites/default/files/documentation/esp32_errata_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

4 10_MUX and GPIO Matrix (GPIO, 10_MUX)

4.1 Overview

The ESP32 chip features 34 physical GPIO pads. Each pad can be used as a general-purpose I/O, or be connected
to an internal peripheral signal. The I0_MUX, RTC IO_MUX and the GPIO matrix are responsible for routing signals
from the peripherals to GPIO pads. Together these systems provide highly configurable 1/O.

Note that the I/0 GPIO pads are 0-19, 21-23, 25-27, 32-39, while the output GPIOs are 0-19, 21-23, 25-27,
32-33. GPIO pads 34-39 are input-only.

This chapter describes the signal selection and connection between the digital pads (FUN_SEL, IE, OE, WPU,
WDU, etc.), 162 peripheral input and 176 output signals (control signals: SIG_IN_SEL, SIG_OUT_SEL, IE, OE,
etc.), fast peripheral input/output signals (control signals: |E, OE, etc.), and RTC IO_MUX.

JTAG, SDIO, Direct I/O
UART, SPI, -#———» Pad control signals:
Ethernet Control FUN_SEL/IE/
(fast signal) signals: OE/WPU/PDU, etc.
IE/OE, etc. . o Digital
IO_MUX [A " | pads
34 GPIOs
162 peripheral
SPI, input/176
UART, output signals | GPIO
FC.I'S, o p matrix
PWM, : .
LEDG Control signals:
|IE/QE, etc.
and more
> RTC
pads
RTC | ¢ | RTCIO_MUX |
GPIO - h o

Figure 4-1. 10_MUX, RTC I0_MUX and GPIO Matrix Overview

1. The IO_MUX contains one register per GPIO pad. Each pad can be configured to perform a "GPIO” function
(when connected to the GPIO Matrix) or a direct function (bypassing the GPIO Matrix). Some high-speed
digital functions (Ethernet, SDIO, SPI, JTAG, UART) can bypass the GPIO Matrix for better high-frequency
digital performance. In this case, the IO_MUXis used to connect these pads directly to the peripheral.)

See Section 4.10 for a list of IO_MUX functions for each I/0 pad.
2. The GPIO Matrix is a full-switching matrix between the peripheral input/output signals and the pads.

e For input to the chip: Each of the 162 internal peripheral inputs can select any GPIO pad as the input
source.

e For output from the chip: The output signal of each of the 34 GPIO pads can be from one of the 176
peripheral output signals.

See Section 4.9 for a list of GPIO Matrix peripheral signals.

Espressif Systems 48 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

3. RTCIO_MUX is used to connect GPIO pads to their low-power and analog functions. Only a subset of GPIO
pads have these optional "RTC” functions.

See Section 4.11 for a list of RTC 10_MUX functions.

4.2 Peripheral Input via GPIO Matrix

4.2.1 Summary

To receive a peripheral input signal via the GPIO Matrix, the GPIO Matrix is configured to source the peripheral
signal’s input index (0-18, 23-36, 39-58, 61-90, 95-124, 140-155, 164-181, 190-195, 198-206) from one of the
34 GPIOs (0-19, 21-23, 25-27, 32-39).

The input signal is read from the GPIO pad through the I0O_MUX. The I0_MUX must be configured to set the chosen
pad to "GPIO” function. This causes the GPIO pad input signal to be routed into the GPIO Matrix, which in turn
routes it to the selected peripheral input.

4.2.2 Functional Description
Figure 4-2 shows the logic for input selection via GPIO Matrix.

In GPIO matrix In 10 MUX

GPIO_FUNCy_IN_SEL

MCU_SEL
GPIOO in N
GPIO1 in GPIO SIGy IN_SEL

GPIO2 in
GPIO3 in l

GPIOX in GPIO X in

Ao A i

1/0 Pad X
—

0
-
Peripheral Signal Y 1 {GPID)]

A
s X e WM O

GPIO39 _in

1o

39

FUN IE=1
(0x30)4 8 CONStANE O input N
(0x38)5¢ Constant 1 input

Figure 4-2. Peripheral Input via I0_MUX, GPIO Matrix

To read GPIO pad X into peripheral signal Y, follow the steps below:
1. Configure the GPIO_FUNCy_IN_SEL_CFG register corresponding to peripheral signal Y in the GPIO Matrix:
e Set GPIO_SIGy_IN_SEL to enable peripheral signal input via GPIO matrix.
e Set the GPIO_FUNCy_IN_SEL field in this register, corresponding to the GPIO pad X to read from.

2. Configure the GPIO_FUNCx_OUT_SEL_CFG register and clear the GPIO_ENABLE_DATA[1] field correspond-
ing to GPIO pad X in the GPIO Matrix:

e Set the GPIO_FUNCx_OEN_SEL bit in the GPIO_FUNCx_OUT_SEL_CFG register to force the pin’s
output state to be determined always by the GPIO_ENABLE_DATA[X] field.

e The GPIO_ENABLE_DATA[¥] field is a bit in either GPIO_ENABLE_REG (GPIOs 0-31) or GPIO_ENABLE1_REG
(GPIOs 32-39). Clear this bit to disable the output driver for the GPIO pad.

Espressif Systems 49 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

3. Configure the IO_MUX to select the GPIO Matrix. Set the I0_MUX_x_REG register corresponding to GPIO
pad X as follows:

e Set the function field (MCU_SEL) to the IO_MUX function corresponding to GPIO X (this is Function
2—numeric value 2—for all pins).

¢ Enable the input by setting the FUN_IE bit.

e Set or clear the FUN_WPU and FUN_WPD bits, as desired, to enable/disable internal pull-up/pull-down
resistors.

Notes:
e One input pad can be connected to multiple input_signals.
¢ The input signal can be inverted with GPIO_FUNCy_IN_INV_SEL.

e |t is possible to have a peripheral read a constantly low or constantly high input value without connecting
this input to a pad. This can be done by selecting a special GPIO_FUNCy_IN_SEL input, instead of a GPIO
number:

= When GPIO_FUNCy_IN_SEL is 0x30, input_signal_x is always O.
- When GPIO_FUNCy_IN_SEL is 0x38, input_signal_x is always 1.

For example, to connect RMT peripheral channel O input signal (RMT_SIG_INO_IDX, signal index 83) to GPIO 15,
please follow the steps below. Note that GPIO 15 is also named the MTDO pin:

1. Set the GPIO_FUNCS83_IN_SEL_CFG register field GPIO_FUNC83_IN_SEL value to 15.
2. As this is an input-only signal, set GPIO_FUNC15_OEN_SEL bit in GPIO_FUNC15_OUT_SEL_CFG_REG.
3. Clear bit 15 of GPIO_ENABLE_REG (field GPIO_ENABLE_DATA[15]).

4. Set the IO_MUX_GPIO15 register MCU_SEL field to 2 (GPIO function) and also set the FUN_IE bit (input
mode).

4.2.3 Simple GPIO Input
The GPIO_IN_REG/GPIO_IN1_REG register holds the input values of each GPIO pad.

The input value of any GPIO pin can be read at any time without configuring the GPIO Matrix for a particular
peripheral signal. However, it is necessary to enable the input in the IO_MUX by setting the FUN_IE bit in the

IO_MUX_x_REG register corresponding to pad X, as mentioned in Section 4.2.2.
4.3 Peripheral Output via GPIO Matrix

4.3.1 Summary
To output a signal from a peripheral via the GPIO Matrix, the GPIO Matrix is configured to route the peripheral output
signal (0-18, 23-37, 61-121, 140-125, 224-228) to one of the 28 GPIOs (0-19, 21-23, 25-27, 32-33).

The output signal is routed from the peripheral into the GPIO Matrix. It is then routed into the I0_MUX, which is
configured to set the chosen pad to "GPIO” function. This causes the output GPIO signal to be connected to the
pad.

Note:
The peripheral output signals 224 to 228 can be configured to be routed in from one GPIO and output directly from another
GPIO.

Espressif Systems 50 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

4.3.2 Functional Description
One of the 176 output signals can be selected to go through the GPIO matrix into the I0O_MUX and then to a pad.
Figure 4-3 illustrates the configuration.

In GPIO matrix In IO MUX
GPIO_FUNCx_OUT _SEL

signal0_out ———»|

0 MCU_SEL
signall_out ——»{ 1
signal2_out ———» 2
signal3_out ——» 3
e 0 (FUNC)
°) GPIO X out L (FUNC)
@ 4 - ou 2 (GPIO) 1/0 Pad x
GPIOx_out
signal228_out ——¥| 228

FUN_OE = 1
GPIO_OUT_DATA bit x———>] 256 (0x100)

Figure 4-3. Output via GPIO Matrix

To output peripheral signal Y to particular GPIO pad X, follow these steps:

1. Configure the GPIO_FUNCx_OUT_SEL_CFG register and GPIO_ENABLE_DATAX] field corresponding to
GPIO Xin the GPIO Matrix:

e Set the GPIO_FUNCx_OUT_SEL field in GPIO_FUNCx_OUT_SEL_CFG to the numeric index (Y) of de-
sired peripheral output signal Y.

e |fthe signal should always be enabled as an output, set the GPIO_FUNCx_OEN_SEL bit in the GPIO_FUN
Cx_OUT_SEL_CFG register and the GPIO_ENABLE_DATA[] field in the GPIO_ENABLE_REG register
corresponding to GPIO pad X. To have the output enable signal decided by internal logic, clear the
GPIO_FUNCx_OEN_SEL bit instead.

e The GPIO_ENABLE_DATA[X] field is a bit in either GPIO_ENABLE_REG (GPIOs 0-31) or GPIO_ENABLET
_REG (GPIOs 32-39). Clear this bit to disable the output driver for the GPIO pad.

2. For an open drain output, set the GPIO_PINx_PAD_DRIVER bit in the GPIO_PINX register corresponding to
GPIO pad X. For push/pull mode (default), clear this bit.

3. Configure the I0_MUX to select the GPIO Matrix. Set the I0_MUX_x_REG register corresponding to GPIO
pad X as follows:

e Set the function field (MCU_SEL) to the IO_MUX function corresponding to GPIO X (this is Function
2—numeric value 2—for all pins).

¢ Set the FUN_DRYV field to the desired value for output strength (0-3). The higher the drive strength, the
more current can be sourced/sunk from the pin.

e |f using open drain mode, set/clear the FUN_WPU and FUN_WPD bits to enable/disable the internal
pull-up/down resistors.

Espressif Systems 51 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Notes:
® The output signal from a single peripheral can be sent to multiple pads simultaneously.
e Only the 28 GPIOs can be used as outputs.

¢ The output signal can be inverted by setting the GPIO_FUNCx_OUT_INV_SEL bit.

4.3.3 Simple GPIO Output
The GPIO Matrix can also be used for simple GPIO output — setting a bit in the GPIO_OUT_DATA register will write
to the corresponding GPIO pad.

To configure a pad as simple GPIO output, the GPIO Matrix GPIO_FUNCx_OUT_SEL register is configured with a
special peripheral index value (0x100).

4.4 Direct /0 vialO _MUX

4.41 Summary

Some high speed digital functions (Ethernet, SDIO, SPI, JTAG, UART) can bypass the GPIO Matrix for better
high-frequency digital performance. In this case, the IO_MUX is used to connect these pads directly to the periph-
eral.

Selecting this option is less flexible than using the GPIO Matrix, as the I0_MUX register for each GPIO pad can
only select from a limited number of functions. However, better high-frequency digital performance will be main-
tained.

4.4.2 Functional Description
Two registers must be configured in order to bypass the GPIO Matrix for peripheral I/O:

1. 10_MUX for the GPIO pad must be set to the required pad function. (Please refer to section 4.10 for a list of
pad functions.)

2. For inputs, the SIG_IN_SEL register must be cleared to route the input directly to the peripheral.

4.5 RTC IO_MUX for Low Power and Analog I/0

4.5.1 Summary

18 GPIO pads have low power capabilities (RTC domain) and analog functions which are handled by the RTC
subsystem of ESP32. The I0_MUX and GPIO Matrix are not used for these functions; rather, the RTC_MUX is
used to redirect the I/0 to the RTC subsystem.

When configured as RTC GPIOs, the output pads can still retain the output level value when the chip is in Deep-
sleep mode, and the input pads can wake up the chip from Deep-sleep.

Section 4.11 has a list of RTC_MUX pins and their functions.

4.5.2 Analog Function Description

The RTC function and analog function of RTC_GPIOs can only be selected one at a time. For the RTC_GPIO8 to
RTC_GPIO17 pins, their analog outputs can be directed to the IO_MUX, controlled by the RTC_IO_TOUCH_PADNn/m_TO_GPIO
bit. If the bit is set to 1, the analog output is enabled, allowing the signal to be routed to I0_MUX through analog

function. On the other hand, if the bit is set to 0, the input signal from the pad is output to I0_MUX through digital

function.

Espressif Systems 52 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

4.6 Light-sleep Mode Pin Functions

Pins can have different functions when the ESP32 is in Light-sleep mode. If the SLP_SEL bit in the IO_MUX register
for a GPIO pad is set to 1, a different set of registers is used to control the pad when the ESP32 is in Light-sleep

mode:

Table 4-1. 10_MUX Light-sleep Pin Function Registers

|O_MUX Function

Normal Execution

Light-sleep Mode

ORSLP_SEL=0 AND SLP_SEL = 1
Output Drive Strength FUN_DRV MCU_DRV
Pull-up Resistor FUN_WPU MCU_WPU
Pull-down Resistor FUN_WPD MCU_WPD
Output Enable (From GPIO Matrix _OEN field) MCU_OE

If SLP_SEL is set to 0, the pin functions remain the same in both normal execution and Light-sleep mode.

4.7 Pad Hold Feature

Each IO pad (including the RTC pads) has an individual hold function controlled by a RTC register. When the pad
is set to hold, the state is latched at that moment and will not change no matter how the internal signals change
or how the IO_MUX configuration or GPIO configuration is modified. Users can use the hold function for the
pads to retain the pad state through a core reset and system reset triggered by watchdog time-out or Deep-sleep
events.

Note:

e For digital pads, to maintain the pad’s input/output status in Deep-sleep mode, you can set
REG_DG_PAD_FORCE_UNHOLD to 0 before powering down.
For RTC pads, the input and output values are controlled by the corresponding bits of register
RTC_CNTL_HOLD_FORCE_REG, and you can set it to 1 to hold the value or set it to 0 to unhold the value.

e Fordigital pads, to disable the hold function after the chip is woken up, you can set REG_DG_PAD_FORCE_UNHOLD
to 1. To maintain the hold function of the pad, you can change the corresponding bit in the register by setting
RTC_CNTL_HOLD_FORCE_REG to 1.

4.8 1/0 Pad Power Supplies
Figure 4-4 and 4-5 show the 10 pad power supplies.

Espressif Systems 53
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

>

[

O\

.z - Ay o P

- o < ! < 8 Q 8 5 &
L a8 F Z a8 g g o o
< < a g o o o & @ o g
S 58K &S o 38 6 00 S
oo} ~ © [To} < @ o — o (o} [so} ~
< < < < < < < < < @ (S} (s}

VDDA GPI023
LNA_IN GPIO18
VDD3P3 GPIOS
VDD3P3 SD_DATA_1
SENSOR_VP SD_DATA_O
SENSOR_CAPP SD_CLK
SENSOR_CAPN SD_CMD
SENSOR_VN SD_DATA_3
CHIP_PU SD_DATA 2
VDET_1 GPIO17
VDET_2 VDD_SDIO
32K _XP GPIO16

(3] < [fo] ©o ~ 0 ()] o - o [} <

- - < = = < [SURNEN VAR o VI VAN oV}

zZ © © N O 735 O X O N 9 % . Analog pads

88 8zEEQog Qg s

¥x e aa52,555%%5%%5 __! Pads powered by VDD3P3_CPU

& ¢ 6 6 I
§ Tl Pads powered by VDD_SDIO
>

B Pads powered by VDD3P3_RTC

Figure 4-4. ESP32 I/0 Pad Power Sources (QFN 6*6, Top View)

o z o N
_] 5 o 9o §
i 8§ 5z 2 B g £ & ¢
3§ ¢ ¥ & 8 & 85 S5 &
© & e v ¥ o 8 = 9o g9
2 5 ¢ 2 I g ¥ 3 g 3
VDDA GPIO19
LNALIN VDD3P3_CPU
VDD3P3 GPI023
VDD3P3 GPIO18
SENSOR_VP GPIOS
SENSOR_CAPP SD_DATA_1
SENSOR_CAPN SD_DATA O
SENSOR_WN SD_CLK
CHIP_PU SD_oMD
VDET_1 SD_DATA 3
VDET_2 SD_DATA 2
32K XP GPIO17
32KXN VDD_SDIO
GPI025 GPIO16
o © ~ © o o - o © %
S g & 8 8 &
= Anal Ll
g 5 = = 0 5S 5 &5 &5 & i} Pads powered by VDD3P3_CPU
o _
é’ Pads powered by VDD_SDIO
>

B Pads powered by VDD3P3_RTC

Figure 4-5. ESP32 I/0 Pad Power Sources (QFN 5*5, Top View)

e Pads marked blue are RTC pads that have their individual analog function and can also act as normal digital

Espressif Systems 54 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

IO pads. For details, please see Section 4.11.
® Pads marked yellow and green have digital functions only.

e Pads marked green can be powered externally or internally via VDD_SDIO (see below).

4.8.1 VDD_SDIO Power Domain
VDD_SDIO can source or sink current, allowing this power domain to be powered externally or internally. To power
VDD_SDIO externally, apply the same power supply of VDD3P3_RTC to the VDD_SDIO pad.

Without an external power supply, the internal regulator will supply VDD_SDIO. The VDD_SDIO voltage can be
configured to be either 1.8V or the same as VDD3P3_RTC, depending on the state of the MTDI pad at reset —
a high level configures 1.8V and a low level configures the voltage to be the same as VDD3P3_RTC. Setting the
efuse bit determines the default voltage of the VDD_SDIO. In addition, software can change the voltage of the
VDD_SDIO by configuring register bits.

4.9 Peripheral Signal List
Table 4-2 contains a list of Peripheral Input/Output signals used by the GPIO Matrix:

Table 4-2. GPIO Matrix Peripheral Signals

Signal Input Signal Output Signal Direct I/0 in I0_MUX
0 SPICLK in SPICLK _out YES
1 SPIQ_in SPIQ_out YES
2 SPID_in SPID_out YES
3 SPIHD_in SPIHD_out YES
4 SPIWP_in SPIWP_out YES
5 SPICSO_in SPICS0_out YES
6 SPICS1_in SPICS1_out -

7 SPICS2_in SPICS2_out -

8 HSPICLK in HSPICLK out YES
9 HSPIQ_in HSPIQ_out YES
10 HSPID_in HSPID_out YES
11 HSPICSO_in HSPICSO_out YES
12 HSPIHD_in HSPIHD_out YES
13 HSPIWP_in HSPIWP_out YES
14 UORXD_in UOTXD_out YES
15 UOCTS_in UORTS_out YES
16 UODSR_in UODTR_out -

17 UTRXD_in U1TXD_out YES
18 U1CTS_in U1RTS_out YES
23 12S00_BCK_in 12S00_BCK _out -

24 12S10_BCK_in 12S10_BCK _out -

25 12S00_WS_in 12S00_WS_out -

26 12S10_WS_in 12S10_WS_out -

27 12S01_BCK_in 12S01_BCK _out -

28 12S0I_WS_in 12S0I_WS_out -

Espressif Systems 55 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Signal Input Signal Output Signal Direct I/0 in IO_MUX
29 I2CEXTO_SCL_in I2CEXTO_SCL_out -

30 I2CEXTO_SDA_in I2CEXTO_SDA_out -

31 pwmO_syncO_in sdio_tohost_int_out -

32 pwmO_sync1_in pwmO_outOa -

33 pwmO_sync2_in pwmO_outOb -

34 pwm0O_f0_in pwmQ_outia -

35 pwmO_f1_in pwmO_out1b -

36 pwmO_f2_in pwmQ_out2a -

37 - pwmO_out2b -

39 pcnt_sig_chO_in0 - -

40 pcnt_sig_ch1_in0 - -

41 pcnt_ctrl_chO_in0 - -

42 pcnt_ctrl_ch1_in0 - -

43 pent_sig_ch0_in1 - -

44 pcnt_sig_ch1_in1 - -

45 pcnt_ctrl_chO_in1 - -

46 pcnt_ctrl_ch1_in1 - -

a7 pcnt_sig_ch0_in2 - -

48 pcnt_sig_ch1_in2 - -

49 pcnt_ctrl_ch0_in2 - -

50 pcnt_ctrl_ch1_in2 - -

51 pcnt_sig_chO_in3 - -

52 pcnt_sig_ch1_in3 - -

53 pcnt_ctrl_chO_in3 - -

b4 pcnt_ctrl_ch1_in3 - -

55 pcnt_sig_chO_in4 - -

56 pcnt_sig_ch1_in4 - -

57 pcnt_ctrl_ch0_in4 - -

58 pcnt_ctrl_ch1_in4 - -

61 HSPICS1_in HSPICS1_out -

62 HSPICS2_in HSPICS2_out -

63 VSPICLK _in VSPICLK _out_mux YES
64 VSPIQ_in VSPIQ_out YES
65 VSPID_in VSPID_out YES
66 VSPIHD_in VSPIHD_out YES
67 VSPIWP_in VSPIWP_out YES
68 VSPICSO0_in VSPICSO_out YES
69 VSPICS1_in VSPICS1_out -

70 VSPICS2_in VSPICS2_out -

71 pent_sig_ch0_in5 ledc_hs_sig_outO -

72 pcnt_sig_ch1_in5 ledc_hs_sig_outi -

73 pcnt_ctrl_ch0_in5 ledc_hs_sig_out2 -

74 pcnt_ctrl_ch1_in5 ledc_hs_sig_out3 -

Espressif Systems

56

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Signal Input Signal Output Signal Direct I/0 in IO_MUX
75 pcnt_sig_chO_in6 ledc_hs_sig_out4 -
76 pcnt_sig_ch1_in6 ledc_hs_sig_out5 -
77 pcnt_ctrl_chQ_in6 ledc_hs_sig_out6 -
78 pcnt_ctrl_ch1_in6 ledc_hs_sig_out7 -
79 pcnt_sig_chO_in7 ledc_Is_sig_outO -
80 pcnt_sig_ch1_in7 ledc_ls_sig_out1 -
81 pent_ctrl_chO_in7 ledc_ls_sig_out? -
82 pcnt_ctrl_ch1_in7 ledc_ls_sig_out3 -
83 rmt_sig_in0 ledc_lIs_sig_out4 -
84 rmt_sig_in1 ledc_ls_sig_outb -
85 rmt_sig_in2 ledc_ls_sig_out6 -
86 rmt_sig_in3 ledc_ls_sig_out7 -
87 rmt_sig_in4 rmt_sig_outO -
88 rmt_sig_in5 rmt_sig_out1 -
89 rmt_sig_in6 rmt_sig_out2 -
0 rmt_sig_in7 rmt_sig_out3 -
91 - rmt_sig_out4 -
92 - rmt_sig_out5 -
93 - rmt_sig_out6 -
94 twai_rx rmt_sig_out7 -
95 [2CEXT1_SCL_in [2CEXT1_SCL_out -
96 [2CEXT1_SDA_in I2CEXT1_SDA_out -
97 host_card_detect_n_1 host_ccmd_od_pullup_en_n| -
98 host_card_detect_n_2 host_rst_n_1 -
99 host_card_write_prt_1 host_rst_n_2 -
100 host_card_write_prt_2 gpio_sdO_out -
101 host_card_int_n_1 gpio_sd1_out -
102 host_card_int_n_2 gpio_sd2_out -
103 pwm1_syncO_in gpio_sd3_out -
104 pwm1_sync1_in gpio_sd4_out -
105 pwm1_sync2_in gpio_sd5_out -
106 pwm1_f0_in gpio_sd6_out -
107 pwm1_f1_in gpio_sd7_out -
108 pwmi_f2_in pwmi_outOa -
109 pwmO_cap0_in pwm1_outOb -
110 pwmO_cap1_in pwm1_outla -
111 pwmO_cap2_in pwmi_out1b -
112 pwm1_cap0_in pwm1_out2a -
113 pwmi_cap1_in pwmi_out2b -
114 pwm1_cap2_in - -
115 - - -
116 - - -
117 - - -
Espressif Systems 57 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Signal Input Signal Output Signal Direct I/0 in IO_MUX
118 - - -
119 - - -
120 - - -
121 - - -
122 - - -
123 - twai_tx -
124 - twai_bus_off_on -
125 - twai_clkout -
140 12S0I_DATA_inO 12S00_DATA_outO -
141 I2S0I_DATA_in1 2S00 _DATA_out1 -
142 12S0I_DATA_in2 12S00_DATA_out? -
143 12S0I_DATA_in3 12S00O_DATA_out3 -
144 I2S0I_DATA_in4 12S00_DATA_out4 -
145 12S0I_DATA_in5 12S00_DATA_outb -
146 12S0I_DATA_in6 12S00_DATA_outt -
147 12S0I_DATA_in7 12S00_DATA_out? -
148 12S0I_DATA_in8 12S0O_DATA_out8 -
149 12S0I_DATA_in9 12S00_DATA_out9 -
150 I2S0I_DATA_in10 12S00_DATA_out10 -
151 I2SOI_DATA_in11 12S00O_DATA_out11 -
152 I2S0I_DATA_in12 12S00_DATA _out12 -
153 I2S0I_DATA_in13 12S00_DATA_out13 -
154 I2S0I_DATA_in14 12S00_DATA_out14 -
155 I2S0I_DATA_in15 12S00_DATA_out15 -
156 - 12S00_DATA_out16 -
157 - 12S00_DATA _out17 -
158 - 12S00_DATA_out18 -
159 - 12S00_DATA_out19 -
160 - 12S00O_DATA_out20 -
161 - 12S00_DATA_out21 -
162 - 2S00 _DATA _out22 -
163 - 12S00_DATA_out23 -
164 12S11_BCK_in 12S11_BCK _out -
165 12S11_WS_in 12S11_WS_out -
166 12S11_DATA_inO 12S10_DATA_outO -
167 12S11_DATA_in1 12S10_DATA_out1 -
168 12S11_DATA_in2 12S10_DATA_out? -
169 12S11_DATA_in3 12S10_DATA_out3 -
170 12S11_DATA_in4 12S10_DATA_outd -
171 12S11_DATA_in5 12S10_DATA_out5 -
172 12S11_DATA_in6 12S10_DATA_out6 -
173 12S11_DATA_in7 12S10_DATA_out? -
174 12S11_DATA_in8 12S10_DATA_out8 -

Espressif Systems

58
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Signal Input Signal Output Signal Direct I/0 in IO_MUX
175 12S11_DATA_in9 12S10_DATA_out9 -
176 12S11_DATA_in10 12S10_DATA_out10 -
177 12S11_DATA_in11 12S10_DATA_out11 -
178 12S11_DATA_in12 12S10_DATA_out12 -
179 12S11_DATA_in13 12S10_DATA_out13 -
180 12S11_DATA_in14 12S10_DATA_out14 -
181 12S11_DATA_in15 12S10_DATA_out15 -
182 - 12S10_DATA_out16 -
183 - 12S10_DATA _out17 -
184 - 12S10_DATA_out18 -
185 - 12S10_DATA_out19 -
186 - 12S10_DATA_out20 -
187 - 12S10_DATA_out21 -
188 - 12S10_DATA_out22 -
189 - 12S10_DATA_out23 -
190 12S0I_H_SYNC - -
191 12S0I_V_SYNC - -
192 12S0I_H_ENABLE - -
193 12S11_H_SYNC - -
194 12S11_V_SYNC - -
195 12S11_H_ENABLE - -
196 - - -
197 - - -
198 U2RXD_in U2TXD_out YES
199 U2CTS_in U2RTS_out YES
200 emac_mdc_i emac_mdc_o -
201 emac_mdi_i emac_mdo_o -
202 emac_crs_i emac_crs_o -
203 emac_col_i emac_col_o -
204 pcmfsync_in bt_audioO_irqg -
205 pcmclk_in bt_audio1_irg -
206 pcmdin bt_audio2_irq -
207 - ble_audioO_irg -
208 - ble_audioi_irg -
209 - ble_audio2_irg -
210 - pcmfsync_out -
211 - pcmclk_out -
212 - pcmdout -
213 - ble_audio_syncO_p -
214 - ble_audio_sync1_p -
215 - ble_audio_sync2_p -
224 - sig_in_func224 -
225 - sig_in_func225 -

Espressif Systems

59

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4

IO_MUX and GPIO Matrix (GPIO, I0_MUX)

Signal Input Signal Output Signal Direct I/0 in IO_MUX
226 - sig_in_func226 -
227 - sig_in_func227 -
228 - sig_in_func228 -

Direct I/0 in I0_MUX ”YES” means that this signal is also available directly via IO_MUX. To apply the GPIO Matrix
to these signals, their corresponding SIG_IN_SEL register must be cleared.

4.10

I0_MUX Pad List

Table 4-3 shows the I0_MUX functions for each I/O pad:

Table 4-3. 10_MUX Pad Summary

GPIO | Pad Name Function O Function 1 Function 2 Function 3 Function 4 Function 5 Reset| Notes
0 GPIOO0 GPIOO CLK_OUT1 | GPIOO - - EMAC_TX_CLK 3 R

1 UOTXD UOTXD CLK_OUT3 | GPIO1 - - EMAC_RXD2 3 -

2 GPIO2 GPIO2 HSPIWP GPIO2 HS2_DATAO SD_DATAO | - 2 R
3 UORXD UORXD CLK_OUT2 | GPIOS - - - 3 -

4 GPIO4 GPIO4 HSPIHD GPIO4 HS2_DATA1 SD_DATA1 EMAC_TX_ER 2 R
5 GPIO5 GPIO5 VSPICSO GPIO5 HS1_DATA6 - EMAC_RX_CLK | 3 -

6 SD_CLK SD_CLK SPICLK GPIO6 HS1_CLK U1CTS - 3 -

7 SD_DATA 0O SD_DATAO | SPIQ GPIO7 HS1_DATAO U2RTS - 3 -

8 SD_DATA_1 SD_DATA1 SPID GPIO8 HS1_DATA1 U2CTS - 3 -

9 SD_DATA 2 SD_DATA2 | SPIHD GPIO9 HS1_DATA2 U1RXD - 3 -
10 SD_DATA_3 SD_DATA3 | SPIWP GPIO10 HS1_DATA3 U1TXD - 3 -

11 SD_CMD SD_CMD SPICSO GPIO11 HS1_CMD U1RTS - 3 -
12 MTDI MTDI HSPIQ GPIO12 HS2_DATA2 SD_DATA2 | EMAC_TXD3 2 R
13 MTCK MTCK HSPID GPIO13 HS2_DATA3 SD_DATA3 | EMAC_RX_ER 2 R
14 MTMS MTMS HSPICLK GPIO14 HS2_CLK SD_CLK EMAC_TXD2 3 R
15 MTDO MTDO HSPICSO GPIO15 HS2_CMD SD_CMD EMAC_RXD3 3 R
16 GPIO16 GPIO16 - GPIO16 HS1_DATA4 U2RXD EMAC_CLK_OUT| 1 -
17 GPIO17 GPIO17 - GPIO17 HS1_DATA5 U2TXD EMAC_CLK_180 | 1 -
18 GPIO18 GPIO18 VSPICLK GPIO18 HS1_DATA7 - - 1 -
19 GPIO19 GPIO19 VSPIQ GPIO19 UOCTS - EMAC_TXDO 1 -
21 GPIO21 GPIO21 VSPIHD GPIO021 - - EMAC_TX_EN 1 -
22 GPI022 GPIO22 VSPIWP GPI022 UORTS - EMAC_TXD1 1 -
23 GPIO23 GPIO23 VSPID GPIO23 HS1_STROBE]| - - 1 -
25 GPI1025 GPIO25 - GPIO25 - - EMAC_RXDO 0 R
26 GPI1026 GPI026 - GPI026 - - EMAC_RXD1 0 R
27 GPI027 GPI027 - GPI027 - - EMAC_RX_DV 0 R
32 32K_XP GPIO32 - GPIO32 - - - 0 R
33 32K _XN GPIO33 - GPIO33 - - - 0 R
34 VDET_1 GPI034 - GPI034 - - - 0 R, I
35 VDET_2 GPIO35 - GPIO35 - - - 0 R, I
36 SENSOR_VP GPIO36 - GPIO36 - - - 0 R, I
37 SENSOR_CAPP| GPIO37 - GPIO37 - - - 0 R, |
38 SENSOR_CAPN GPIO38 - GPIO38 - - - 0 R, |
39 SENSOR_VN GPIO39 - GPIO39 - - - 0 R, I

Reset Configurations

"Reset” column shows each pad’s default configurations after reset:

Espressif Systems

e 0 - IE=0 (input disabled).

Submit Documentation Feedback

60

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

e 1 - |E=1 (input enabled).

e 2 -|E=1, WPD=1 (input enabled, pull-down resistor).

e 3 - |E=1, WPU=1 (input enabled, pull-up resistor).

Notes

¢ R - Pad has RTC/analog functions via RTC_MUX.

e | - Pad can only be configured as input GPIO. These input-only pads do not feature an output driver or

internal pull-up/pull-down circuitry.

Please refer to the ESP32 Pin Lists in ESP32 Datasheet for more details.

4.11

RTC_MUX Pin List

Table 4-4 shows the RTC pins and how they correspond to GPIO pads:

Table 4-4. RTC_MUX Pin Summary

Analog Function RTC Function
RTC GPIO Num | GPIO Num Pad Name g] 5 Function 0 Function 1
(FUN_SEL =0) | (FUN_SEL =3)
0 36 SENSOR_VP ADC_H ADC1_CHO - RTC_GPIOO -
1 37 SENSOR_CAPP ADC_H ADC1_CHA1 - RTC_GPIOA1 -
2 38 SENSOR_CAPN ADC_H ADC1_CH2 - RTC_GPIO2 -
3 39 SENSOR_VN ADC_H ADC1_CH3 - RTC_GPIO3 -
4 34 VDET_1 - ADC1_CH®6 - RTC_GPIO4 -
5 35 VDET_2 - ADC1_CH7 - RTC_GPIO5 -
6 25 GPI025 DAC_1 ADC2_CH8 - RTC_GPIO6 -
7 26 GPIO26 DAC_2 ADC2_CH9 - RTC_GPIO7 -
8 33 32K_XN XTAL_32K_N | ADC1_CH5 | TOUCHS RTC_GPIO8 -
9 32 32K_XP XTAL_32K_P | ADC1_CH4 | TOUCH9 RTC_GPIO9 -
10 4 GPIO4 - ADC2_CHO | TOUCHO | RTC_GPIO10 12C_SCL*
11 0 GPIOO - ADC2_CH1 | TOUCH1 | RTC_GPIO11 12C_SDA*
12 2 GPIO2 - ADC2_CH2 | TOUCH2 | RTC_GPIO12 12C_SCL*
13 15 MTDO - ADC2_CH3 | TOUCH3 | RTC_GPIO13 12C_SDA*
14 13 MTCK - ADC2_CH4 | TOUCH4 | RTC_GPIO14 -
15 12 MTDI - ADC2_CH5 | TOUCH5 | RTC_GPIO15 -
16 14 MTMS - ADC2_CH6 | TOUCH6 | RTC_GPIO16 -
17 27 GPIO27 - ADC2_CH7 | TOUCH7 | RTC_GPIO17 -
Note:
For more information on the configuration of sar_i2c_xx, see Section RTC 12C Controller in Chapter 30 ULP Coprocessor
(ULP).

4.12 Register Summary

4121

Espressif Systems

GPIO Matrix Register Summary

61

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Name Description Address Access
GPIO_OUT_REG GPIO 0-31 output register Ox3FF44004 | R/W
GPIO_OUT_W1TS_REG GPIO 0-31 output register W1TS 0x3FF44008 | WO
GPIO_OUT_WA1TC_REG GPIO 0-31 output register_ W1TC Ox3FF4400C | WO
GPIO_OUT1_REG GPIO 32-39 output register Ox3FF44010 | R/W
GPIO_OUT1_WA1TS_REG GPIO 32-39 output bit set register Ox3FF44014 | WO
GPIO_OUT1_WA1TC_REG GPIO 32-39 output bit clear register 0x3FF44018 | WO
GPIO_ENABLE_REG GPIO 0-31 output enable register Ox3FF44020 | R/W
GPIO_ENABLE_W1TS_REG GPIO 0-31 output enable register_ W1TS Ox3FF44024 | WO
GPIO_ENABLE_WI1TC_REG GPIO 0-31 output enable register W1TC Ox3FF44028 | WO
GPIO_ENABLE1_REG GPIO 32-39 output enable register 0x3FF4402C | R/'W
GPIO_ENABLE1_W1TS_REG GPIO 32-39 output enable bit set register 0x3FF44030 | WO
GPIO_ENABLE1_WI1TC_REG GPIO 32-39 output enable bit clear register Ox3FF44034 | WO
GPIO_STRAP_REG Bootstrap pin value register 0x3FF44038 | RO
GPIO_IN_REG GPIO 0-31 input register Ox3FF4403C | RO
GPIO_IN1_REG GPIO 32-39 input register Ox3FF44040 | RO
GPIO_STATUS_REG GPIO 0-31 interrupt status register Ox3FF44044 | R/W
GPIO_STATUS_WA1TS_REG GPIO 0-31 interrupt status register_W1TS Ox3FF44048 | WO
GPIO_STATUS_W1TC_REG GPIO 0-31 interrupt status register_W1TC 0x3FF4404C | WO
GPIO_STATUS1_REG GPIO 32-39 interrupt status register 0x3FF44050 | R/W
GPIO_STATUS1_W1TS_REG GPIO 32-39 interrupt status bit set register Ox3FF44054 | WO
GPIO_STATUS1_WI1TC_REG GPIO 32-39 interrupt status bit clear register Ox3FF44058 | WO
GPIO_ACPU_INT_REG GPIO 0-31 APP_CPU interrupt status Ox3FF44060 | RO
GPIO 0-31 APP_CPU non-maskable interrupt
GPIO_ACPU_NMI_INT_REG Ox3FF44064 | RO
status
GPIO_PCPU_INT_REG GPIO 0-31 PRO_CPU interrupt status Ox3FF44068 | RO
GPIO 0-31 PRO_CPU non-maskable interrupt
GPIO_PCPU_NMI_INT_REG Ox3FF4406C | RO
status
GPIO_ACPU_INT1_REG GPIO 32-39 APP_CPU interrupt status Ox3FF44074 | RO
GPIO 32-39 APP_CPU non-maskable interrupt
GPIO_ACPU_NMI_INT1_REG 0x3FF44078 | RO
status
GPIO_PCPU_INT1_REG GPIO 32-39 PRO_CPU interrupt status O0x3FF4407C | RO
GPIO 32-39 PRO_CPU non-maskable interrupt
GPIO_PCPU_NMI_INT1_REG O0x3FF44080 | RO
status
GPIO_PINO_REG Configuration for GPIO pin O Ox3FF44088 | R/W
GPIO_PIN1_REG Configuration for GPIO pin 1 0x3FF4408C | R/W
GPIO_PIN2_REG Configuration for GPIO pin 2 0x3FF44090 | R/W
GPIO_PIN38_REG Configuration for GPIO pin 38 Ox3FF44120 | R/W
GPIO_PIN39_REG Configuration for GPIO pin 39 Ox3FF44124 | R/W
GPIO_FUNCO_IN_SEL_CFG_REG Peripheral function 0 input selection register Ox3FF44130 | R/W
GPIO_FUNCA1_IN_SEL_CFG_REG Peripheral function 1 input selection register Ox3FF44134 | R/W
GPIO_FUNC254_IN_SEL_CFG_REG | Peripheral function 254 input selection register Ox3FF44528 | R/W
Espressif Systems 62 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GPIO, I0_MUX)
Name Description Address Access
GPIO_FUNC255_IN_SEL_CFG_REG | Peripheral function 255 input selection register 0x3FF4452C | R/W
GPIO_FUNCO_OUT_SEL_CFG_REG | Peripheral output selection for GPIO O 0Ox3FF44530 | R/W
GPIO_FUNC1_OUT_SEL_CFG_REG | Peripheral output selection for GPIO 1 Ox3FF44534 | R/W
GPIO_FUNC38_OUT_SEL_CFG_REG| Peripheral output selection for GPIO 38 Ox3FF445C8 | R/W
GPIO_FUNC39_OUT_SEL_CFG_REG| Peripheral output selection for GPIO 39 Ox3FF445CC | R/W

4.12.2 10 MUX Register Summary
Name Description Address Access
IO_MUX_PIN_CTRL Clock output configuration register Ox3FF49000 | R/W
IO_MUX_GPIO36_REG Configuration register for pad GPIO36 Ox3FF49004 | R/W
IO_MUX_GPIO37_REG Configuration register for pad GPIO37 Ox3FF49008 | R/W
IO_MUX_GPIO38_REG Configuration register for pad GPIO38 0x3FF4900C | R/W
IO_MUX_GPIO39_REG Configuration register for pad GPIO39 Ox3FF49010 | R/W
IO_MUX_GPIO34_REG Configuration register for pad GPIO34 Ox3FF49014 | R/W
IO_MUX_GPIO35_REG Configuration register for pad GPIO35 Ox3FF49018 | R/W
I0O_MUX_GPIO32_REG Configuration register for pad GPIO32 Ox3FF4901C | R/W
IO_MUX_GPIO33_REG Configuration register for pad GPIO33 0x3FF49020 | R/W
IO_MUX_GPIO25_REG Configuration register for pad GPIO25 Ox3FF49024 | R/W
IO_MUX_GPIO26_REG Configuration register for pad GPIO26 Ox3FF49028 | R/W
IO_MUX_GPIO27_REG Configuration register for pad GPIO27 0x3FF4902C | R/W
IO_MUX_MTMS_REG Configuration register for pad MTMS Ox3FF49030 | R/W
IO_MUX_MTDI_REG Configuration register for pad MTDI Ox3FF49034 | R/W
IO_MUX_MTCK_REG Configuration register for pad MTCK Ox3FF49038 | R/W
IO_MUX_MTDO_REG Configuration register for pad MTDO Ox3FF4903C | R/W
IO_MUX_GPIO2_REG Configuration register for pad GPIO2 Ox3FF49040 | R/W
IO_MUX_GPIO0_REG Configuration register for pad GPIOO Ox3FF49044 | R/W
IO_MUX_GPIO4_REG Configuration register for pad GPIO4 Ox3FF49048 | R/W
IO_MUX_GPIO16_REG Configuration register for pad GPIO16 Ox3FF4904C | R/W
IO_MUX_GPIO17_REG Configuration register for pad GPIO17 Ox3FF49050 | R/W
IO_MUX_SD_DATA2_REG Configuration register for pad SD_DATA2 Ox3FF49054 | R/W
I0O_MUX_SD_DATA3_REG Configuration register for pad SD_DATA3 Ox3FF49058 | R/W
IO_MUX_SD_CMD_REG Configuration register for pad SD_CMD Ox3FF4905C | R/W
IO_MUX_SD_CLK_REG Configuration register for pad SD_CLK Ox3FF49060 | R/W
IO_MUX_SD_DATAO_REG Configuration register for pad SD_DATAO Ox3FF49064 | R/W
IO_MUX_SD_DATA1_REG Configuration register for pad SD_DATA1 Ox3FF49068 | R/W
IO_MUX_GPIO5_REG Configuration register for pad GPIO5 0x3FF4906C | R/W
IO_MUX_GPIO18_REG Configuration register for pad GPIO18 Ox3FF49070 | R/W
IO_MUX_GPIO19_REG Configuration register for pad GPIO19 Ox3FF49074 | R/W
IO_MUX_GPIO20_REG Configuration register for pad GPIO20 Ox3FF49078 | R/W
IO_MUX_GPIO21_REG Configuration register for pad GPIO21 Ox3FF4907C | R/W
IO_MUX_GPIO22_REG Configuration register for pad GPIO22 Ox3FF49080 | R/W
IO_MUX_UORXD_REG Configuration register for pad UORXD Ox3FF49084 | R/W

Espressif Systems 63 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GPIO, I0_MUX)
Name Description Address Access
IO_MUX_UOTXD_REG Configuration register for pad UOTXD Ox3FF49088 | R/W
IO_MUX_GPIO23_REG Configuration register for pad GPIO23 Ox3FF4908C | R/W
IO_MUX_GPIO24_REG Configuration register for pad GPIO24 Ox3FF49090 | R/W

4.12.3 RTC IO MUX Register Summary
Name ‘ Description Address Access
GPIO configuration / data registers
RTCIO_RTC_GPIO_OUT_REG RTC GPIO output register Ox3FF48400 | R/W
RTCIO_RTC_GPIO_OUT_W1TS_REG RTC GPIO output bit set register Ox3FF48404 | WO
RTCIO_RTC_GPIO_OUT_W1TC_REG RTC GPIO output bit clear register Ox3FF48408 | WO
RTCIO_RTC_GPIO_ENABLE_REG RTC GPIO output enable register Ox3FF4840C | R/W
RTCIO_RTC_GPIO_ENABLE_W1TS_REG| RTC GPIO output enable bit set register Ox3FF48410 | WO
RTCIO_RTC_GPIO_ENABLE_WA1TC_REG| RTC GPIO output enable bit clear register Ox3FF48414 | WO
RTCIO_RTC_GPIO_STATUS_REG RTC GPIO interrupt status register Ox3FF48418 | WO
RTCIO_RTC_GPIO_STATUS_WA1TS_REG | RTC GPIO interrupt status bit set register Ox3FF4841C | WO
RTCIO_RTC_GPIO_STATUS_WA1TC_REG | RTC GPIO interrupt status bit clear register Ox3FF48420 | WO
RTCIO_RTC_GPIO_IN_REG RTC GPIO input register Ox3FF48424 | RO
RTCIO_RTC_GPIO_PINO_REG RTC configuration for pin 0 O0x3FF48428 | R/W
RTCIO_RTC_GPIO_PIN1_REG RTC configuration for pin 1 Ox3FF4842C | R/W
RTCIO_RTC_GPIO_PIN2_REG RTC configuration for pin 2 Ox3FF48430 | R/W
RTCIO_RTC_GPIO_PIN3_REG RTC configuration for pin 3 Ox3FF48434 | R/W
RTCIO_RTC_GPIO_PIN4_REG RTC configuration for pin 4 Ox3FF48438 | R/W
RTCIO_RTC_GPIO_PIN5_REG RTC configuration for pin 5 Ox3FF4843C | R/W
RTCIO_RTC_GPIO_PING6_REG RTC configuration for pin 6 Ox3FF48440 | R/W
RTCIO_RTC_GPIO_PIN7_REG RTC configuration for pin 7 Ox3FF48444 | R/W
RTCIO_RTC_GPIO_PIN8_REG RTC configuration for pin 8 Ox3FF48448 | R/W
RTCIO_RTC_GPIO_PIN9_REG RTC configuration for pin 9 O0x3FF4844C | R/W
RTCIO_RTC_GPIO_PIN10_REG RTC configuration for pin 10 Ox3FF48450 | R/W
RTCIO_RTC_GPIO_PIN11_REG RTC configuration for pin 11 Ox3FF48454 | R/W
RTCIO_RTC_GPIO_PIN12_REG RTC configuration for pin 12 0x3FF48458 | R/W
RTCIO_RTC_GPIO_PIN13_REG RTC configuration for pin 13 Ox3FF4845C | R/W
RTCIO_RTC_GPIO_PIN14_REG RTC configuration for pin 14 0x3FF48460 | R/W
RTCIO_RTC_GPIO_PIN15_REG RTC configuration for pin 15 Ox3FF48464 | R/W
RTCIO_RTC_GPIO_PIN16_REG RTC configuration for pin 16 Ox3FF48468 | R/W
RTCIO_RTC_GPIO_PIN17_REG RTC configuration for pin 17 Ox3FF4846C | R/W
RTCIO_DIG_PAD_HOLD_REG RTC GPIO hold register Ox3FF48474 | R/W
GPIO RTC function configuration registers
RTCIO_SENSOR_PADS_REG Sensor pads configuration register Ox3FF4847C | R/W
RTCIO_ADC_PAD_REG ADC configuration register Ox3FF48480 | R/W
RTCIO_PAD_DAC1_REG DAC1 configuration register Ox3FF48484 | R/W
RTCIO_PAD_DAC2_REG DAC2 configuration register Ox3FF48488 | R/W
RTCIO_XTAL_32K_PAD_REG 32KHz crystal pads configuration register 0Ox3FF4848C | R/W
RTCIO_TOUCH_CFG_REG Touch sensor configuration register Ox3FF48490 | R/W

Espressif Systems 64 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Name Description Address Access
RTCIO_TOUCH_PADO_REG Touch pad configuration register Ox3FF48494 | R/W
RTCIO_TOUCH_PAD9_REG Touch pad configuration register Ox3FF484B8 | R/W
RTCIO_EXT_WAKEUPO_REG External wake up configuration register Ox3FF484BC | R/W
RTCIO_XTL_EXT_CTR_REG Crystal power down enable GPIO source Ox3FF484C0 | R/W
RTCIO_SAR_I2C_IO_REG RTC 12C pad selection Ox3FF484C4 | R/W

4.13 Registers
4.13.1 GPIO Matrix Registers

The addresses in parenthesis besides register names are the register addresses relative to the GPIO base ad-
dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register
addresses are listed in Section 4.12.1 GPIO Matrix Register Summary.

Register 4.1. GPIO_OUT_REG (0x0004)

‘ X

GPIO_OUT_REG GPIO0-31 output value. (R/W)

Register 4.2. GPIO_OUT_W1TS_REG (0x0008)

|

‘ X

GPIO_OUT_WI1TS_REG GPIO0-31 output set register. For every bit that is 1 in the value written here,
the corresponding bit in GPIO_OUT_REG will be set. (WO)

Register 4.3. GPIO_OUT_W1TC_REG (0x000c)

B

|

X ‘Reset

X ‘Reset

‘ X ‘Reset

GPIO_OUT_WI1TC_REG GPIO0-31 output clear register. For every bit that is 1 in the value written
here, the corresponding bit in GPIO_OUT_REG will be cleared. (WO)

Espressif Systems

65
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4

IO_MUX and GPIO Matrix (GPIO, I0_MUX)

Register 4.4. GPIO_OUT1_REG (0x0010)

) N

@
& 7

NS

GPIO_OUT_DATA GPIO32-39 output value. (R/W)

Register 4.5. GPIO_OUT1_W1TS_REG (0x0014)

S o\g\
S or
© N

& &

GPIO_OUT_DATA GPIO32-39 output value set register. For every bit that is 1 in the value written
here, the corresponding bit in GPIO_OUT1_DATA will be set. (WO)

Register 4.6. GPIO_OUT1_W1TC_REG (0x0018)

GPIO_OUT_DATA GPIO32-39 output value clear register. For every bit that is 1 in the value written
here, the corresponding bit in GPIO_OUT1_DATA will be cleared. (WO)

Register 4.7. GPIO_ENABLE_REG (0x0020)

GPIO_ENABLE_REG GPIO0-31 output enable. (R/W)

Espressif Systems 66 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.8. GPIO_ENABLE_W1TS_REG (0x0024)

E]

’ X ‘ Reset

GPIO_ENABLE_W1TS_REG GPIO0-31 output enable set register. For every bit that is 1 in the value
written here, the corresponding bit in GPIO_ENABLE will be set. (WO)

Register 4.9. GPIO_ENABLE_W1TC_REG (0x0028)

E]

’ X ‘ Reset

GPIO_ENABLE_W1TC_REG GPIO0-31 output enable clear register. For every bit that is 1 in the
value written here, the corresponding bit in GPIO_ENABLE will be cleared. (WO)

Register 4.10. GPIO_ENABLE1_REG (0x002c)

E []

’OOOOOOOOOOOOOOOOOOOOOOOO|X><><xxxxx‘Reset

GPIO_ENABLE_DATA GPIO32-39 output enable. (R/W)

Register 4.11. GPIO_ENABLE1_W1TS_REG (0x0030)

GPIO_ENABLE_DATA GPIO32-39 output enable set register. For every bit thatis 1 in the value written
here, the corresponding bit in GPIO_ENABLE1 will be set. (WO)

Espressif Systems 67 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.12. GPIO_ENABLE1_W1TC_REG (0x0034)

GPIO_ENABLE_DATA GPIO32-39 output enable clear register. For every bit that is 1 in the value
written here, the corresponding bit in GPIO_ENABLE1 will be cleared. (WO)

Register 4.13. GPIO_STRAP_REG (0x0038)

‘31 16|15 0‘

‘OOOOOOOOOOOOOOOO|Xxxxxxxxxxxxxxxx‘Reset

GPIO_STRAPPING GPIO strapping results: Bit5-bitO of boot_sel_chip[5:0] correspond to MTDI,
GPIOO0, GPIO2, GPIO4, MTDO, GPIO5, respectively.

Register 4.14. GPIO_IN_REG (0x003c)

E 3

‘ X ‘Reset

GPIO_IN_REG GPIO0-31 input value. Each bit represents a pad input value, 1 for high level and O
for low level. (RO)

Register 4.15. GPIO_IN1_REG (0x0040)

GPIO_IN_DATA_NEXT GPIO32-39 input value. Each bit represents a pad input value. (RO)

Espressif Systems 68 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.16. GPIO_STATUS_REG (0x0044)

E]

’ X ‘ Reset

GPIO_STATUS_REG GPIO0-31 interrupt status register. Each bit can be either of the two interrupt
sources for the two CPUs. The enable bits in GPIO_STATUS_INTERRUPT, corresponding to the
0-4 bits in GPIO_PINn_REG should be set to 1. (R/W)

Register 4.17. GPIO_STATUS_W1TS_REG (0x0048)

E]

’ X ‘ Reset

GPIO_STATUS_W1TS_REG GPIO0-31 interrupt status set register. For every bit that is 1 in the value
written here, the corresponding bit in GPIO_STATUS_INTERRUPT will be set. (WO)

Register 4.18. GPIO_STATUS_W1TC_REG (0x004c)

E]

’ X ‘ Reset

GPIO_STATUS_W1TC_REG GPIO0-31 interrupt status clear register. For every bit that is 1 in the
value written here, the corresponding bit in GPIO_STATUS_INTERRUPT will be cleared. (WO)

Register 4.19. GPIO_STATUS1_REG (0x0050)

Q)b\ &é
K ;
& NS
& &

E T]

’OOOOOOOOOOOOOOOOOOOOOOOO|X><><xxxxx‘Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status. (R/W)

Espressif Systems 69 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.20. GPIO_STATUS1_W1TS_REG (0x0054)

’OOOOOOOOOOOOOOOOOOOOOOOOxxxxxxxx‘Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status set register. For every bit that is 1 in the
value written here, the corresponding bit in GPIO_STATUS_INTERRUPT1 will be set. (WO)

Register 4.21. GPIO_STATUS1_W1TC_REG (0x0058)

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status clear register. For every bit that is 1 in the
value written here, the corresponding bit in GPIO_STATUS_INTERRUPT1 will be cleared. (WO)

Register 4.22. GPIO_ACPU_INT_REG (0x0060)

E]

’ X ‘ Reset

GPIO_ACPU_INT_REG GPIO0-31 APP CPU interrupt status. (RO)

Register 4.23. GPIO_ACPU_NMI_INT_REG (0x0064)

E]

’ X ‘ Reset

GPIO_ACPU_NMI_INT_REG GPIO0-31 APP CPU non-maskable interrupt status. (RO)

Espressif Systems 70 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.24. GPIO_PCPU_INT_REG (0x0068)

E]

’ X ‘ Reset

GPIO_PCPU_INT_REG GPIO0-31 PRO CPU interrupt status. (RO)

Register 4.25. GPIO_PCPU_NMI_INT_REG (0x006c)

E]

’ X ‘ Reset

GPIO_PCPU_NMI_INT_REG GPIO0-31 PRO CPU non-maskable interrupt status. (RO)

Register 4.26. GPIO_ACPU_INT1_REG (0x0074)

E T]

]oooooooooooooooooooooooo|xxxxxxxx‘Reset

GPIO_APPCPU_INT GPIO32-39 APP CPU interrupt status. (RO)

Register 4.27. GPIO_ACPU_NMI_INT1_REG (0x0078)

& 3
%) @)
& &

E T]

’OOOOOOOOOOOOOOOOOOOOOOOO|><xxxxxxx‘Reset

GPIO_APPCPU_NMI_INT GPIO32-39 APP CPU non-maskable interrupt status. (RO)

Espressif Systems 71 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.28. GPIO_PCPU_INT1_REG (0x007c)

GPIO_PROCPU_INT GPIO32-39 PRO CPU interrupt status. (RO)

Register 4.29. GPIO_PCPU_NMI_INT1_REG (0x0080)

GPIO_PROCPU_NMIL_INT GPIO32-39 PRO CPU non-maskable interrupt status. (RO)

Espressif Systems 72 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.30. GPIO_PIN/_REG (: 0-39) (0x88+0x4*")

&
Q
Q7 & \QQ/
¥ & & TS
K7 % K7 W7
i Qg\ i Q?\ Og i 0O /\ i
& & & & & & & &

GPIO_PINA_INT_ENA Interrupt enable bits for pin n: (R/W)
bit0: APP CPU interrupt enable;
bit1: APP CPU non-maskable interrupt enable;
bit2: PRO CPU interrupt enable;
bit3: PRO CPU non-maskable interrupt enable.

GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable will only wake up the CPU from Light-sleep.
(RW)

GPIO_PINA_INT_TYPE Interrupt type selection: (R/W)
0: GPIO interrupt disable;

. rising edge trigger;

: falling edge trigger;

: any edge trigger;

. low level trigger;

o A WON =

: high level trigger.

GPIO_PINn_PAD_DRIVER 0: normal output; 1: open drain output. (R/W)

Register 4.31. GPIO_FUNCy_IN_SEL_CFG_REG (: 0-255) (0x130+0x4%))

ol
S
o &
é? \é/ \e/
N oo
O N\
@) o <L <
%QJ(A Q\O/\O/ Q\O/
@ > & [©)

GPIO_SIGy_IN_SEL Bypass the GPIO Matrix. 1: route through GPIO Matrix, 0: connect signal di-
rectly to peripheral configured in the I0_MUX. (R/W)

GPIO_FUNCy_IN_INV_SEL Invert the input value. 1: invert; O: do not invert. (R/W)

GPIO_FUNCy_IN_SEL Selection control for peripheral input y. A value of 0-39 selects which of the
40 GPIO Matrix input pins this signal is connected to, or 0x38 for a constantly high input or 0x30
for a constantly low input. (R/W)

Espressif Systems 73 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.32. GPIO_FUNCn_OUT_SEL_CFG_REG (n: 0-19, 21-23, 25-27, 32-33) (0x530+0x4*)

o @
STpre” &
e>e/«> '
SSEES N
C)\’\/d\/d\/ d\/
D S S5
& Q50507 Q7

& S &

‘ 31 12| 11 | 10 9 |8 0 ‘

‘OOOOOOOOOOOOOOOOOOOOxxxx><xxxxxxx‘Reset

GPIO_FUNCH_OEN_INV_SEL 1: Invert the output enable signal; O: do not invert the output enable
signal. (R/W)

GPIO_FUNCn_OEN_SEL 1: Force the output enable signal to be sourced from bit n of
GPIO_ENABLE_REG; 0: use output enable signal from peripheral. (R/W)

GPIO_FUNC_OUT_INV_SEL 1: Invert the output value; O: do not invert the output value. (R/W)

GPIO_FUNCn_OUT_SEL Selection control for GPIO output n. A value of s (0<=s<256)
connects peripheral output s to GPIO output n. A value of 256 selects bit n of
GPIO_OUT_REG/GPIO_OUT1_REG and GPIO_ENABLE_REG/GPIO_ENABLE1_REG as the out-
put value and output enable. (R/W)

4.13.2 10 MUX Registers

The addresses in parenthesis besides register names are the register addresses relative to the IO MUX base
addresses provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute
register addresses are listed in Section 4.12.2 |0 MUX Register Summary.

Espressif Systems 74 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.33. |0_MUX_PIN_CTRL (0x00)

% Q N
- -
& & &K
§®%® Q\%/ Q\%/ Q\e/
‘31 12|11 8|7 4|3 0‘
‘ 0x0 | ox0 | 0x0 | 0x0 \ Reset

If you want to output clock for 12S0 (12S0_CLK) to:

CLK_OUT1, then set PIN_CTRL[3:0] = 0x0;

CLK_OUT2, then set PIN_CTRL[3:0] = 0x0 and PIN_CTRL][7:4] = 0x0;
CLK_OUTS, then set PIN_CTRL[3:0] = 0x0 and PIN_CTRL[11:8] = 0xO0.
If you want to output clock for 12S7 (12S7_CLK) to:

CLK_OUT1, then set PIN_CTRL[3:0] = OxF;

CLK_OUT2, then set PIN_CTRL[3:0] = OxF and PIN_CTRL][7:4] = Ox0;
CLK_OUTS, then set PIN_CTRL[3:0] = OxF and PIN_CTRL[11:8] = 0x0.

If you want to output clock for APLL to

CLK_OUT1, then set PIN_CTRL[3:0] = Ox6;

CLK_OUT2, then set PIN_CTRL[3:0] = 0x6 and PIN_CTRL[7:4] = 0x6;
CLK_OUTS, then set PIN_CTRL[3:0] = Ox6 and PIN_CTRL[11:8] = Ox6. (R/W)

Note:

e Only the above mentioned combinations of clock source (i.e. 12S0/7_CLK, APLL clock) and clock output pins (i.e.
CLK_OUT1 ~ 3) are possible.

e The CLK_OUT1 ~ 3 can be found in the |IO_MUX Pad Summary.

Espressif Systems 75 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.34. |0_MUX_x_REG (x: GPIO0-GPIO39) (0x10+4*%)

S &> LL <<\“ S L &

& 7 K e SN (9

& & SIS O OLLIE

‘31 15|14 12|11 10|9|8|7|6 5|4|3|2|l|0‘
\ooooooooooooooooo| 0x0 |O><2|O|O|O|OxO|O|O|O|O|O‘Re5et

MCU_SEL Select the IO_MUX function for this signal. O selects Function O, 1 selects Function 1, etc.
R/W)

FUN_DRV Select the drive strength of the pad. A higher value corresponds with a higher strength.
For GPIO34-39, FUN_DRYV is always 0. For detailed drive strength, please see note 8 in Table
"Notes on ESP32 Pin Lists”, in ESP32 Datasheet. (R/W)

FUN_IE Input enable of the pad. 1: input enabled; O: input disabled. (R/W)

FUN_WPU Pull-up enable of the pad. 1: internal pull-up enabled; O: internal pull-up disabled. GPIO
pins 34-39 are input-only. These pins do not feature an output driver or internal pull- up/pull-down
circuitry, therefore, their FUN_WPU is always 0. (R/W)

FUN_WPD Pull-down enable of the pad. 1: internal pull-down enabled, O: internal pull-down dis-
abled. GPIO pins 34-39 are input-only. These pins do not feature an output driver or internal pull-
up/pull-down circuitry, therefore, their FUN_WPD is always 0. (R/W)

MCU_DRV Select the drive strength of the pad during sleep mode. A higher value corresponds with
a higher strength. (R/W)

MCU_IE Input enable of the pad during sleep mode. 1: input enabled; O: input disabled. (R/W)

MCU_WPU Pull-up enable of the pad during sleep mode. 1: internal pull-up enabled; O: internal
pull-up disabled. (R/W)

MCU_WPD Pull-down enable of the pad during sleep mode. 1: internal pull-down enabled; O: internal
pull-down disabled. (R/W)

SLP_SEL Sleep mode selection of this pad. Set to 1 to put the pad in sleep mode. (R/W)

MCU_OE Output enable of the pad in sleep mode. 1: enable output; O: disable output. (R/W)

4.13.3 RTC IO MUX Registers

The addresses in parenthesis besides register names are the register addresses relative to (the RTC base address
+ 0x0400). The RTC base address is provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and
Memory. The absolute register addresses are listed in Section 4.12.3 RTC 10 MUX Register Summary.

Espressif Systems 76 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.35. RTCIO_RTC_GPIO_OUT_REG (0x0000)

)

&
Qf—’Q)G

& \

‘31 14|13 0‘

‘xxxxxxxxxxxxxxxxxx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_OUT_DATA GPIO0-17 output register. Bit14 is GPIO[0], bit15 is GPIO[1], etc.
(R/W)

Register 4.36. RTCIO_RTC_GPIO_OUT_W1TS_REG (0x0004)

‘31 14|13 0‘

‘xx><xxxx><x><xx><xxxxx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_OUT_DATA_W1TS GPIO0-17 output set register. For every bit that is 1 in the
value written here, the corresponding bit in RTCIO_RTC_GPIO_OUT will be set. (WO)

Register 4.37. RTCIO_RTC_GPIO_OUT_W1TC_REG (0x0008)

‘31 14 |13 0‘

‘xxxxxxxx><xxxxxxxxxOOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_OUT_DATA_W1TC GPIO0-17 output clear register. For every bit that is 1 in the
value written here, the corresponding bit in RTCIO_RTC_GPIO_OUT will be cleared. (WO)

Espressif Systems 77 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.38. RTCIO_RTC_GPIO_ENABLE_REG (0x000C)

S
&

Q?Q)J\A
A

‘31 14 |13 0‘

‘xxxxxxxx><xxxx><xxxxOOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_ENABLE GPIO0-17 output enable. Bit14 is GPIO[0], bit15 is GPIO[1], etc. 1
means this GPIO pad is output. (R/W)

Register 4.39. RTCIO_RTC_GPIO_ENABLE_W1TS_REG (0x0010)

D

'S
& &

‘31 14 |13 0‘

‘xx><xxxx><xxxx><xxxxxOOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_ENABLE_W1TS GPIO0-17 output enable set register. For every bit that is 1 in
the value written here, the corresponding bit in RTCIO_RTC_GPIO_ENABLE will be set. (WO)

Register 4.40. RTCIO_RTC_GPIO_ENABLE_W1TC_REG (0x0014)

‘31 14 |13 0‘

‘xxxxxxxxxxxxxxxxxxOOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_ENABLE_W1TC GPIO0-17 output enable clear register. For every bit thatis 1 in
the value written here, the corresponding bit in RTCIO_RTC_GPIO_ENABLE will be cleared. (WO)

Espressif Systems 78 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.41. RTCIO_RTC_GPIO_STATUS_REG (0x0018)

N

)
Q%Q)é

& A

‘31 14|13 0‘

‘xx><x><xxxxxxxxxxxxx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_STATUS_INT GPIO0-17 interrupt status. Bit14 is GPIO[Q], bit15 is GPIO[1],
etc. This register should be used together with RTCIO_RTC_GPIO_PINN_INT_TYPE in RT-
CIO_RTC_GPIO_PINn_REG. 1: corresponding interrupt; 0: no interrupt. (R/W)

Register 4.42. RTCIO_RTC_GPIO_STATUS_W1TS_REG (0x001C)

o
Q

7

D

6
& &

‘31 14 |13 0‘

‘xxxxxxxx><><><xx><xxxxOOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_STATUS_INT_W1TS GPIO0-17 interrupt set register. For every bit that is 1 in
the value written here, the corresponding bit in RTCIO_RTC_GPIO_STATUS_INT will be set. (WO)

Register 4.43. RTCIO_RTC_GPIO_STATUS_W1TC_REG (0x0020)

‘31 14 |13 0‘

‘xx><xxxx><xxxx><xxxxxOOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_STATUS_INT_W1TC GPIO0-17 interrupt clear register. For every bit that is 1 in
the value written here, the corresponding bit in RTCIO_RTC_GPIO_STATUS_INT will be cleared.

(WO)

Espressif Systems 79 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.44. RTCIO_RTC_GPIO_IN_REG (0x0024)

D

Q\
& &

‘31 14 |13 0‘

‘xxxxxxxx><><><xx><xxxxOOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_IN_NEXT GPIO0-17 input value. Bit14 is GPIO[0], bit15 is GPIO[1], etc. Each
bit represents a pad input value, 1 for high level, and O for low level. (RO)

Register 4.45. RTCIO_RTC_GPIO_PINn_REG (n: 0-17) (28+4*n)

<
@\/
¥ &
{S,QQ 7 <2<</ <)®
SR 7
Q\é\\/ Q\é(\/ \%\\/
D & & S &
& 7 P’ & 7 &
& & & ¢ & ¢
‘31 11|10|9 7|6 3|2|1 0‘
\ooooooooooooooooooooo|x|xxx|oooo|x|o O‘Reset
RTCIO_RTC_GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable. This will only wake up the
ESP32 from Light-sleep. (R/W)
RTCIO_RTC_GPIO_PINn_INT_TYPE GPIO interrupt type selection. (R/W)
0: GPIO interrupt disable;
1: rising edge trigger;
2: falling edge trigger;
3: any edge trigger;
4: low level trigger;
5: high level trigger.
RTCIO_RTC_GPIO_PINn_PAD_DRIVER Pad driver selection. 0: normal output; 1: open drain.
R/W)
Espressif Systems 80 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.46. RTCIO_DIG_PAD_HOLD_REG (0x0074)

E]

‘ 0 ‘Reset

RTCIO_DIG_PAD_HOLD_REG Selects the digital pads which should be put on hold. While O allows
normal operation, 1 puts the pad on hold. (R/W)

Name Description

Bit[Q] Set to 1 to enable the Hold function of pad UORTD

Bit[1] Set to 1 to enable the Hold function of pad UOTXD

Bit[2] Set to 1 to enable the Hold function of pad
SD_CLK

Bit[3] Set to 1 to enable the Hold function of pad
SD_DATAO

Bit[4] Set to 1 to enable the Hold function of pad
SD_DATA1

Bit[5] Set to 1 to enable the Hold function of pad
SD_DATA2

Bit[6] Set to 1 to enable the Hold function of pad
SD_DATAS3

Bit[7] Set to 1 to enable the Hold function of pad
SD_CMD

Bit[8] Set to 1 to enable the Hold function of pad GPIO5

Bit[9] Set to 1 to enable the Hold function of pad GPIO16

Bit[10] Set to 1 to enable the Hold function of pad GPIO17

Bit[11] Set to 1 to enable the Hold function of pad GPIO18

Bit[12] Set to 1 to enable the Hold function of pad GPIO19

Bit[13] Set to 1 to enable the Hold function of pad GPIO20

Bit[14] Set to 1 to enable the Hold function of pad GPIO21

Bit[15] Set to 1 to enable the Hold function of pad GPIO22

Bit[16] Set to 1 to enable the Hold function of pad GPI023

Espressif Systems 81 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4

IO_MUX and GPIO Matrix (GPIO, I0_MUX)

Register 4.47. RTCIO_SENSOR_PADS_REG (0x007C)

RTCIO_SENSOR_SENSEn_HOLD Set to 1 to hold the output value on sensen; O is for normal op-
eration. (R/W)

RTCIO_SENSOR_SENSEn MUX_SEL 1: route sensen to the RTC block; O: route sensen to the
digital IO_MUX. (R/W)

RTCIO_SENSOR_SENSEn_FUN_SEL Select the RTC IO_MUX function for this pad. 0: select Func-
tion 0. (R/W)

RTCIO_SENSOR_SENSEn_SLP_SEL Selection of sleep mode for the pad: set to 1 to put the pad
in sleep mode. (R/W)

RTCIO_SENSOR_SENSEn_SLP_IE Input enable of the pad in sleep mode. 1: enabled; O: disabled.
R/W)

RTCIO_SENSOR_SENSEN_FUN_IE Input enable of the pad. 1: enabled; O: disabled. (R/W)

Espressif Systems 82 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.48. RTCIO_ADC_PAD_REG (0x0080)

‘31|30|29|28|27 26|25|24|23|22 21|20|19|18|17 0‘

\o|o|o|o| 0 |o|o|o| 0 |o|o|o|o 0O 000 0O0O0OGOGOU OGO OGO OO O0U OGO 0O O‘Reset

RTCIO_ADC_ADCn_HOLD Set to 1 to hold the output value on the pad; O is for normal operation.
(R/W)

RTCIO_ADC_ADCn_MUX_SEL O: route pad to the digital IO_MUX; (R/W)
1: route pad to the RTC block.

RTCIO_ADC_ADCn_FUN_SEL Select the RTC function for this pad. O: select Function O; 3: select
Function 1. (R/W)

RTCIO_ADC_ADCn_SLP_SEL Signal selection of pad’s sleep mode. Set this bit to 1 to put the pad
to sleep. (R/W)

RTCIO_ADC_ADCn_SLP_IE Input enable of the pad in sleep mode. 1 enabled; O disabled. (R/W)

RTCIO_ADC_ADCn_FUN_IE Input enable of the pad. 1 enabled; O disabled. (R/W)

Espressif Systems 83 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.49. RTCIO_PAD_DAC1_REG (0x0084)

<
@
&
O v N v Q7
P e &« £
Q S < 97 X /O >)
Q@ oY @Q{O Q\go © *go SRS INFAFNS ((\56 W
O\/ O\/O\/ N O\/ C)\/Q\/ O\/ Q\/Q\/O\/O\/O\/
X & & & S
O (OGO’ o O PP OGO 5
O/ O/O/O/ O/ O/O/ O/ O/O/O/O/O/ é
P OES S PP P PP0S $
& LLE & Fg ¢ FLELLL &
‘ 31 30| 29 28 27 | 26 19 | 18 17 | 16 15 | 14 13 12 11 10 |9 0 ‘
\2 ofo]o 0 oooooooooooooooooo\Reset

RTCIO_PAD_PDAC1_DRV Select the drive strength of the pad. (R/W)

RTCIO_PAD_PDAC1_HOLD Set to 1 to hold the output value on the pad; set to O for normal oper-
ation. (R/W)

RTCIO_PAD_PDAC1_RDE 1: Pull-down on pad enabled; O: Pull-down disabled. (R/W)
RTCIO_PAD_PDAC1_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)
RTCIO_PAD_PDAC1_DAC PAD DAC1 output value. (R/W)

RTCIO_PAD_PDAC1_XPD_DAC Power on DAC1. Usually, PDAC1 needs to be tristated if we power
on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

RTCIO_PAD_PDAC1_MUX_SEL O0: route pad to the digital IO_MUX; (R/W)
1: route to the RTC block.

RTCIO_PAD_PDAC1_FUN_SEL the functional selection signal of the pad. (R/W)

RTCIO_PAD_PDAC1_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the
pad to sleep. (R/W)

RTCIO_PAD_PDAC1_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)
RTCIO_PAD_PDAC1_SLP_OE Output enable of the pad. 1: enabled ; 0: disabled. (R/W)
RTCIO_PAD_PDAC1_FUN_IE Input enable of the pad. 1: enabled it; O: disabled. (R/W)

RTCIO_PAD_PDAC1_DAC_XPD_FORCE Power on DAC1. Usually, we need to tristate PDAC1 if
we power on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

Espressif Systems 84 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.50. RTCIO_PAD_DAC2_REG (0x0088)

<
O
&
O v o Q7
YW L L < Y
N9 & e Y K
N \/0<</ % O Q7S 7 RIQIQID O
q,?Q\ Q,/OQ,/Q(‘[S§> q/?v qqu/sv\) ijo @?\/@?\/%?\/@3\5@/?
OV 0OV 0 O O (@) O OV 0" 0" .0
NS NS NS I S S s
<3<) 80 80 QQ ?Q 80 80 30 /Q /Q /Q /Q /Q
?9 Q?QQ?QQ?Q X~ ?QQ?Q Q?Q Q?QQ?QQ?‘QQ?‘QQ?‘Q Qp\
O/ O/O/O/ O/ O/O/ O/ O/O/O/ /O/ é
O OUOAT & AT O AOATATAOAT O
& O & E& € LELLE &
‘ 31 30| 29 28 27 | 26 19| 18 17 | 16 15| 14 13 12 11 10 |9 0 ‘
\2 ofo]o 0 oooooooooooooooooo\Reset

RTCIO_PAD_PDAC2_DRV Select the drive strength of the pad. (R/W)

RTCIO_PAD_PDAC2_HOLD Set to 1 to hold the output value on the pad; O is for normal operation.
RW)

RTCIO_PAD_PDAC2_RDE 1: Pull-down on pad enabled; O: Pull-down disabled. (R/W)
RTCIO_PAD_PDAC2_RUE 1: Pull-up on pad enabled; O: Pull-up disabled. (R/W)
RTCIO_PAD_PDAC2_DAC PAD DAC?2 output value. (R/W)

RTCIO_PAD_PDAC2_XPD_DAC Power on DAC2. PDAC2 needs to be tristated if we power on the
DAG, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

RTCIO_PAD_PDAC2_MUX_SEL O0: route pad to the digital IO_MUX; (R/W)
1: route to the RTC block.

RTCIO_PAD_PDAC2_FUN_SEL Select the RTC function for this pad. 0: select Function 0. (R/W)

RTCIO_PAD_PDAC2_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the
pad to sleep. (R/W)

RTCIO_PAD_PDAC2_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)
RTCIO_PAD_PDAC2_SLP_OE Output enable of the pad. 1: enabled; O: disabled. (R/W)
RTCIO_PAD_PDAC2_FUN_IE Input enable of the pad. 1: enabled; O: disabled. (R/W)

RTCIO_PAD_PDAC2_DAC_XPD_FORCE Power on DAC2. Usually, we need to tristate PDAC2 if
we power on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

Espressif Systems 85 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GPIO, I0_MUX)
Register 4.51. RTCIO_XTAL_32K_PAD_REG (0x008C)
VPN N
S FEE F FEF & PEE S SEES F SEEFE E
B T e o
}2 ooo2oooowoooo000000000100001%%»c
RTCIO_XTAL_X32N_DRV Select the drive strength of the pad. (R/W)
RTCIO_XTAL_X32N_HOLD Set to 1 to hold the output value on the pad; O is for normal operation.
RW)
RTCIO_XTAL_X32N_RDE 1: Pull-down on pad enabled; O: Pull-down disabled. (R/W)
RTCIO_XTAL_X32N_RUE 1: Pull-up on pad enabled; O: Pull-up disabled. (R/W)
RTCIO_XTAL_X32P_DRV Select the drive strength of the pad. (R/W)
RTCIO_XTAL_X32P_HOLD Set to 1 to hold the output value on the pad, O is for normal operation.
(R/W)
RTCIO_XTAL_X32P_RDE 1: Pull-down on pad enabled; O: Pull-down disabled. (R/W)
RTCIO_XTAL_X32P_RUE 1: Pull-up on pad enabled; O: Pull-up disabled. (R/W)
RTCIO_XTAL_DAC_XTAL_32K 32K XTAL bias current DAC value. (R/W)
RTCIO_XTAL_XPD_XTAL_32K Power up 32 KHz crystal oscillator. (R/W)
RTCIO_XTAL_X32N_MUX_SEL 0: route X32N pad to the digital IO_MUX; 1: route to RTC block.
RW)
RTCIO_XTAL_X32P_MUX_SEL O0: route X32P pad to the digital IO_MUX; 1: route to RTC block.
(RW)
RTCIO_XTAL_X32N_FUN_SEL Select the RTC function. O: select function 0. (R/W)
RTCIO_XTAL_X32N_SLP_SEL Sleep mode selection. Set this bit to 1 to put the pad to sleep. (R/W)
RTCIO_XTAL_X32N_SLP_IE Input enable of the pad in sleep mode. 1: enabled; O: disabled. (R/W)
RTCIO_XTAL_X32N_SLP_OE Output enable of the pad. 1: enabled; O; disabled. (R/W)
RTCIO_XTAL_X32N_FUN_IE Input enable of the pad. 1: enabled; O: disabled. (R/W)
RTCIO_XTAL_X32P_FUN_SEL Select the RTC function. 0: select function O; 1: select function 1.
RW)
RTCIO_XTAL_X32P_SLP_SEL Sleep mode selection. Set this bit to 1 to put the pad to sleep. (R/W)
RTCIO_XTAL_X32P_SLP_IE Input enable of the pad in sleep mode. 1: enabled; O: disabled. (R/W)
Continued on the next page...
Espressif Systems 86 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.51. RTCIO_XTAL_32K_PAD_REG (0x008C)

Continued from the previous page...

RTCIO_XTAL_X32P_SLP_OE Output enable of the pad in sleep mode. 1: enabled; O: disabled.
R/W)

RTCIO_XTAL_X32P_FUN_IE Input enable of the pad. 1: enabled; O: disabled. (R/W)
RTCIO_XTAL_DRES_XTAL_32K 32K XTAL resistor bias control. (R/W)

RTCIO_XTAL_DBIAS_XTAL_32K 32K XTAL self-bias reference control. (R/W)

Register 4.52. RTCIO_TOUCH_CFG_REG (0x0090)

@v% X N~ &
& & &£ & 5
K S
\2\/ \2\/ \2\/ \2\/ \2\/
SRR SR SR SR
o © O © o/>O o/>O o/>O &
o O & > & &
& & & & &L &
‘31 30 29 | 28 27| 26 25|24 23|22 0‘
\01100110oooooooooooooooooooooooo\Reset

RTCIO_TOUCH_XPD_BIAS Touch sensor bias power on bit. 1: power on; O: disabled. (R/W)
RTCIO_TOUCH_DREFH Touch sensor saw wave top voltage. (R/W)
RTCIO_TOUCH_DREFL Touch sensor saw wave bottom voltage. (R/W)
RTCIO_TOUCH_DRANGE Touch sensor saw wave voltage range. (R/W)

RTCIO_TOUCH_DCUR Touch sensor bias current. When BIAS_SLEEP is enabled, this setting is
available. (R/W)

Espressif Systems 87 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.53. RTCIO_TOUCH_PAD/_REG (: 0-7) (94+4*/)

> Y Oy @)
O X L. o & S ?Q/e?% AN LN
7§ &S AN S SIPOMPNININ PN Y ok
<\/ \'\/ \”\/ \”\/ \\/ (\/ (\/ (\/ (\/ {\/ \'\/ \'\/ \'\/ <\/ <\/
99 9 7 OIS O F I
0\2\/ 0\2\/ 0\2\/0 s 0\2\/ 0\2\/0\2\/0\2\/0\2\/ 0\2\/ S /0 /0 /Q /Q 7
PPy D PP (D ORUPDUOD N
O/ O’ O~ O’GQ) O 0/.07.07.0" O/ 000070 (AQ)
O O OO P O OUOAOADT (O (OAUOAOAOAO 9
€ L € EEEL € LEELE ¢
‘31|30 29|28|27|26 25 23|22 21|20|19 18 17|16|15|14 13|12|11 0‘
\0|1 0|1|o|o| 100 |o|o|o|o|0 o|o|o|o|0|0|oooooooooooo\Reset

RTCIO_TOUCH_PADn_HOLD Write 1 to hold the current value of the output. (R/W)

RTCIO_TOUCH_PADn_DRV Selects the drive strength of the pad. A higher value corresponds with
a higher strength. For detailed drive strength, please see £ESP32 Datasheet > Appendix A.1 Notes
on ESP32 Pin Lists > Note 8. (R/W)

RTCIO_TOUCH_PADn_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)
RTCIO_TOUCH_PADn_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_TOUCH_PADn_DAC Touch sensor slope control. 3-bit for each touch pad. Default is 100.
RW)

RTCIO_TOUCH_PAD_START Write 1 to start touch sensor. (R/W)

RTCIO_TOUCH_PAD_TIE_OPT Default touch sensor tie option.
0: Tiedto OV
1: Tied to VDD_RTC voltage

R/W)
RTCIO_TOUCH_PADn_XPD Write 1 to power on the touch sensor. (R/W)

RTCIO_TOUCH_PADn_MUX_SEL Selects RTC I0_MUX or IO_MUX to control the IE/OE/RUE/RDE
statues of RTC pad.
1: Selects RTC I0_MUX
0: Selects I0_MUX
RW)

RTCIO_TOUCH_PADn_FUN_SEL Selects the function of the RTC.
0: RTC Function O
1: Reserved
2: Reserved
3: RTC Function 1
RW)

RTCIO_TOUCH_PADN_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the
pad to sleep. (R/W)

Continued on the next page...

Espressif Systems 88 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.53. RTCIO_TOUCH_PAD/_REG (: 0-7) (94+4*/)

Continued from the previous page...

RTCIO_TOUCH_PADN_SLP_IE Input enable of the pad in sleep mode (SLP_SEL = 1).
1: Enabled

0: Disabled
(R/W)

RTCIO_TOUCH_PAD_SLP_OE Output enable of the pad in sleep mode (SLP_SEL = 1).
1: Enabled
0: Disabled

(R/W)

RTCIO_TOUCH_PAD/_FUNL_IE Input enable of the pad in normal working mode (SLP_SEL = 0).
1: Enabled

0: Disabled
(R/W)

RTCIO_TOUCH_PADn_TO_GPIO Controls the routing of touch pad input signals to I0_MUX.
1: The input signal from the touch pad is routed to IO_MUX through analog function.
0: The input signal from the touch pad is routed to I0_MUX through digital function.
RW)

Espressif Systems 89 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.54. RTCIO_TOUCH_PAD/_REG (7: 8-9) (94+4*)

‘31 26 | 25 23122 |21 |20 |19 |16 0‘

\oooooomo ooooooooooooooooooooooo\Rese»c

RTCIO_TOUCH_PADm_DAC Touch sensor slope control. 3-bit for each touch pad. Default 100.
(R/W)
RTCIO_TOUCH_PADm_START Write 1 to start touch sensor. (R/W)
RTCIO_TOUCH_PADM_TIE_OPT Default touch sensor tie option.
0: Tedto OV

1: Tied to VDD_RTC voltage
R/W)

RTCIO_TOUCH_PADm_XPD Write 1 to power on the touch sensor. (R/W)

RTCIO_TOUCH_PADM_TO_GPIO Controls the routing of touch pad input signals to I0_MUX.
1: The input signal from the touch pad is routed to IO_MUX through analog function.
0: The input signal from the touch pad is routed to I0_MUX through digital function.

(R'W)
Register 4.55. RTCIO_EXT_WAKEUPO_REG (0x00BC)
5
S
<&
o
& >
o $
& &
‘31 27|26 0‘
\ 0 |oo0oooooooooooooooooooooooo\Reset

RTCIO_EXT_WAKEUPO_SEL GPIO[0-17] can be used to wake up the chip when the chip is in the
sleep mode. This register prompts the pad source to wake up the chip when the latter is in
deep/light sleep mode. 0: select GPIOO; 1: select GPIO2, etc. (R/W)

Espressif Systems 90 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

4 10_MUX and GPIO Matrix (GP1O, I0_MUX)

Register 4.56. RTCIO_XTL_EXT_CTR_REG (0x00C0)

&
&
7/
N
«Q\Of\ %Q’(@é\
<& N
‘ 31 27 | 26 0 ‘
\ 0

|ooooooooooooooooooooooooooo\Reset

RTCIO_XTL_EXT_CTR_SEL Select the external crystal power down enable source to get into

sleep mode. 0O: select GPIOO; 1: select GPIO2, etc. The input value on this pin XOR
RTC_CNTL_XTL_EXT_CTR_LV is the crystal power down enable signal. (R/W)

Register 4.57. RTCIO_SAR_I2C_IO_REG (0x00C4)

>
Qv/ %C)\//
&7
??\/ ??\/ Q)&
O’ O/ &
<) < &
& & &
\o|0|oo0ooooooooooooooooooooooooo\Rese»c
RTCIO_SAR_I2C_SDA_SEL Selects the other pad as the RTC 12C SDA signal. 0: pad
TOUCH_PADI[1]; 1: pad TOUCH_PADI3]. Default value is 0. (R/W)
RTCIO_SAR_I2C_SCL_SEL Selects the other pad as the RTC 12C SCL signal. 0: pad
TOUCH_PADIO]; 1: pad TOUCH_PAD[2]. Default value is 0. (R/W)

Espressif Systems 91

ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

5 DPort Registers

5.1 Introduction

The ESP32 integrates a large number of peripherals, and enables the control of individual peripherals to achieve
optimal characteristics in performance-vs-power-consumption scenarios. The DPort registers control clock man-
agement (clock gating), power management, and the configuration of peripherals and core-system modules. The
system arranges each module with configuration registers contained in the DPort Register.

5.2 Features
DPort registers correspond to different peripheral blocks and core modules:

e System and memory

Reset and clock

Interrupt matrix

* DMA

MPU/MMU

APP_CPU controller

Peripheral clock gating and reset

5.3 Functional Description

5.3.1 System and Memory Register

System and memory registers are used for system and memory configuration, such as cache configuration and
memory remapping. They are listed in Section 5.4, categorized as ”System and memory registers”. For a detailed
description of these registers, please refer to Chapter System and Memory.

5.3.2 Reset and Clock Registers
Reset and clock registers are listed in Section 5.4, categorized as "Reset and clock registers”. For a detailed
description of these registers, please refer to Chapter Reset and Clock.

5.3.3 Interrupt Matrix Register

The interrupt matrix registers are used for configuring and mapping interrupts through the interrupt matrix. They
are listed in Section 5.4, categorized as ”Interrupt matrix registers”. For a detailed description of these registers,
please refer to Chapter Interrupt Matrix (INTERRUPT).

5.3.4 DMA Registers
DMA registers are used for the SPI DMA configuration. They are listed in Section 5.4, categorized as "DMA
registers”. For a detailed description of these registers, please refer to Chapter DMA Controller (DMA).

5.3.5 MPU/MMU Registers

MPU/MMU registers are used for MPU/MMU configuration and operation control. They are listed in Section 5.4,
categorized as "MPU/MMU registers”. For a detailed description of these registers, please refer to Chapter Memory
Management and Protection Units (MMU, MPU).

Espressif Systems 92 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

5.3.6 APP_CPU Controller Registers

APP_CPU controller registers are used for some basic configuration of the APP_CPU, such as performing a stalling
execution, and for configuring the ROM boot jump address. The registers are listed in Section 5.4, categorized
as "APP_CPU controller registers”. A detailed description of these registers is provided in section 5.5. Note that
reset bits are not self-clearing.

5.3.7 Peripheral Clock Gating and Reset
The following registers are used for controlling the clock gating and reset of different peripherals. A detailed de-
scription of these registers is provided in section 5.5.

e DPORT_PERI_CLK_EN_REG

DPORT_PERI_RST_EN_REG

DPORT_PERIP_CLK_EN_REG

DPORT_PERIP_RST_EN_REG

DPORT_WIFI_CLK_EN_REG
e DPORT_WIFI_RST_EN_REG
Notice:
e Clock gating and reset registers are active high.

® Reset registers cannot be cleared by hardware. Therefore, SW reset clear is required after setting the reset
registers.

e ESP32 features low power consumption. This is why some peripheral clocks are gated (disabled) by default.
Before using any of these peripherals, it is mandatory to enable the clock for the given peripheral by setting
the corresponding CLK_EN bit to 1, and release the peripheral from reset state to make it operational by
setting the RST_EN bit to 0.

Espressif Systems 93 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

5.4 Register Summary

Name Description Address Access
System and memory registers
DPORT_PRO_BOOT_REMAP_CTRL_REG remap mode for PRO_CPU Ox3FFO0000 | R/W
DPORT_APP_BOOT_REMAP_CTRL_REG remap mode for APP_CPU Ox3FFO00004 | R/W
DPORT_GACHE_MUX_MODE_REG the mode ofthe two caches | seeono7c | RAW
sharing the memory
Reset and clock registers
DPORT_CPU_PER_CONF_REG Selects CPU clock Ox3FFO003C | R/W
Interrupt matrix registers
DPORT_CPU_INTR_FROM_CPU_0_REG interrupt O in both CPUs Ox3FFO00DC | R/W
DPORT_CPU_INTR_FROM_CPU_1_REG interrupt 1 in both CPUs Ox3FFOO0EO | R/W
DPORT_CPU_INTR_FROM_CPU_2_REG interrupt 2 in both CPUs Ox3FFOO0E4 | R/W
DPORT_CPU_INTR_FROM_CPU_3_REG interrupt 3 in both CPUs Ox3FFOO0E8 | R/W
DPORT_PRO_INTR_STATUS_REG_0_REG PRO_CPU interrupt status O Ox3FFOOOEC | RO
DPORT_PRO_INTR_STATUS_REG_1_REG PRO_CPU interrupt status 1 Ox3FFOO0FO | RO
DPORT_PRO_INTR_STATUS_REG_2_REG PRO_CPU interrupt status 2 Ox3FFOO0F4 | RO
DPORT_APP_INTR_STATUS_REG_0_REG APP_CPU interrupt status 0 Ox3FFO00F8 | RO
DPORT_APP_INTR_STATUS_REG_1_REG APP_CPU interrupt status 1 Ox3FFOOOFC | RO
DPORT_APP_INTR_STATUS_REG_2_REG APP_CPU interrupt status 2 Ox3FFO0100 | RO
DPORT_PRO_MAC_INTR_MAP_REG interrupt map Ox3FF00104 | R/W
DPORT_PRO_MAC_NMI_MAP_REG interrupt map Ox3FF00108 | R/W
DPORT_PRO_BB_INT_MAP_REG interrupt map Ox3FFO010C | R/W
DPORT_PRO_BT_MAC_INT_MAP_REG interrupt map Ox3FF00110 | R/W
DPORT_PRO_BT_BB_INT_MAP_REG interrupt map Ox3FF00114 | R/W
DPORT_PRO_BT_BB_NMI_MAP_REG interrupt map Ox3FF00118 | R/W
DPORT_PRO_RWBT_IRQ_MAP_REG interrupt map Ox3FF0011C | R/W
DPORT_PRO_RWBLE_IRQ_MAP_REG interrupt map Ox3FF00120 | R/W
DPORT_PRO_RWBT_NMI_MAP_REG interrupt map Ox3FF00124 | R/W
DPORT_PRO_RWBLE_NMI_MAP_REG interrupt map Ox3FF00128 | R/W
DPORT_PRO_SLCO_INTR_MAP_REG interrupt map Ox3FF0012C | R/W
DPORT_PRO_SLC1_INTR_MAP_REG interrupt map Ox3FF00130 | R/W
DPORT_PRO_UHCIO_INTR_MAP_REG interrupt map Ox3FF00134 | R/W
DPORT_PRO_UHCI1_INTR_MAP_REG interrupt map Ox3FF00138 | R/W
DPORT_PRO_TG_TO_LEVEL_INT_MAP_REG interrupt map Ox3FF0013C | R/W
DPORT_PRO_TG_T1_LEVEL_INT_MAP_REG interrupt map Ox3FF00140 | R/W
DPORT_PRO_TG_WDT_LEVEL_INT_MAP_REG interrupt map Ox3FF00144 | R/W
DPORT_PRO_TG_LACT_LEVEL_INT_MAP_REG interrupt map Ox3FF00148 | R/W
DPORT_PRO_TG1_TO_LEVEL_INT_MAP_REG interrupt map Ox3FF0014C | R/W
DPORT_PRO_TG1_T1_LEVEL_INT_MAP_REG interrupt map Ox3FF00150 | R/W
DPORT_PRO_TG1_WDT_LEVEL_INT_MAP_REG interrupt map Ox3FF00154 | R/W
DPORT_PRO_TG1_LACT_LEVEL_INT_MAP_REG interrupt map Ox3FF00158 | R/W
DPORT_PRO_GPIO_INTERRUPT_MAP_REG interrupt map Ox3FF0015C | R/W
DPORT_PRO_GPIO_INTERRUPT_NMI_MAP_REG interrupt map Ox3FF00160 | R/W

Espressif Systems

94

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Name Description Address Access
DPORT_PRO_CPU_INTR_FROM_CPU_O_MAP_REG | interrupt map Ox3FF00164 | R/W
DPORT_PRO_CPU_INTR_FROM_CPU_1_MAP_REG | interrupt map Ox3FF00168 | R/W
DPORT_PRO_CPU_INTR_FROM_CPU_2_MAP_REG | Interrupt map Ox3FF0016C | R/W
DPORT_PRO_CPU_INTR_FROM_CPU_3_MAP_REG | interrupt map Ox3FF00170 | R/W
DPORT_PRO_SPI_INTR_O_MAP_REG interrupt map Ox3FF00174 | R/W
DPORT_PRO_SPI_INTR_1_MAP_REG interrupt map Ox3FF00178 | R/W
DPORT_PRO_SPI_INTR_2_MAP_REG interrupt map Ox3FF0017C | R/W
DPORT_PRO_SPI_INTR_3_MAP_REG interrupt map Ox3FF00180 | R/W
DPORT_PRO_I2S0_INT_MAP_REG interrupt map Ox3FF0O0184 | R/W
DPORT_PRO_I2S1_INT_MAP_REG interrupt map Ox3FF00188 | R/W
DPORT_PRO_UART_INTR_MAP_REG interrupt map Ox3FF0018C | R/W
DPORT_PRO_UART1_INTR_MAP_REG interrupt map Ox3FFO0190 | R/W
DPORT_PRO_UART2_INTR_MAP_REG interrupt map Ox3FF00194 | R/W
DPORT_PRO_SDIO_HOST_INTERRUPT_MAP_REG interrupt map Ox3FF00198 | R/W
DPORT_PRO_EMAC_INT_MAP_REG interrupt map Ox3FFO0019C | R/W
DPORT_PRO_PWMO_INTR_MAP_REG interrupt map Ox3FFO0O1AO0 | R/W
DPORT_PRO_PWM1_INTR_MAP_REG interrupt map Ox3FFO01A4 | R/W
DPORT_PRO_LEDC_INT_MAP_REG interrupt map Ox3FF001BO | R/W
DPORT_PRO_EFUSE_INT_MAP_REG interrupt map Ox3FF001B4 | R/W
DPORT_PRO_TWAI_INT_MAP_REG interrupt map Ox3FF001B8 | R/W
DPORT_PRO_RTC_CORE_INTR_MAP_REG interrupt map Ox3FF001BC | R/W
DPORT_PRO_RMT_INTR_MAP_REG interrupt map Ox3FFO01CO | R/W
DPORT_PRO_PCNT_INTR_MAP_REG interrupt map Ox3FF001C4 | R/W
DPORT_PRO_I2C_EXTO_INTR_MAP_REG interrupt map Ox3FFO01C8 | R/W
DPORT_PRO_I2C_EXT1_INTR_MAP_REG interrupt map Ox3FFO01CC | R/W
DPORT_PRO_RSA_INTR_MAP_REG interrupt map Ox3FFO01D0O | R/W
DPORT_PRO_SPI1_DMA_INT_MAP_REG interrupt map Ox3FFO01D4 | R/W
DPORT_PRO_SPI2_DMA_INT_MAP_REG interrupt map Ox3FF0O01D8 | R/W
DPORT_PRO_SPI3_DMA_INT_MAP_REG interrupt map Ox3FFO01DC | R/W
DPORT_PRO_WDG_INT_MAP_REG interrupt map Ox3FFOO1EO | R/W
DPORT_PRO_TIMER_INT1_MAP_REG interrupt map Ox3FFO01E4 | R/W
DPORT_PRO_TIMER_INT2_MAP_REG interrupt map Ox3FFOO1E8 | R/W
DPORT_PRO_TG_TO_EDGE_INT_MAP_REG interrupt map Ox3FFOO1EC | R/W
DPORT_PRO_TG_T1_EDGE_INT_MAP_REG interrupt map Ox3FFO01FO | R/W
DPORT_PRO_TG_WDT_EDGE_INT_MAP_REG interrupt map Ox3FFO01F4 | R/W
DPORT_PRO_TG_LACT_EDGE_INT_MAP_REG interrupt map Ox3FFO01F8 | R/W
DPORT_PRO_TG1_TO_EDGE_INT_MAP_REG interrupt map Ox3FFOO1FC | R/W
DPORT_PRO_TG1_T1_EDGE_INT_MAP_REG interrupt map Ox3FF00200 | R/W
DPORT_PRO_TG1_WDT_EDGE_INT_MAP_REG interrupt map Ox3FF00204 | R/W
DPORT_PRO_TG1_LACT_EDGE_INT_MAP_REG interrupt map Ox3FF00208 | R/W
DPORT_PRO_MMU_IA_INT_MAP_REG interrupt map Ox3FF0020C | R/W
DPORT_PRO_MPU_IA_INT_MAP_REG interrupt map Ox3FF00210 | R/W
DPORT_PRO_CACHE_IA_INT_MAP_REG interrupt map Ox3FF00214 | R/W

Espressif Systems

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Name Description Address Access
DPORT_APP_MAC_INTR_MAP_REG interrupt map Ox3FF00218 | R/W
DPORT_APP_MAC_NMI_MAP_REG interrupt map Ox3FF0021C | R/W
DPORT_APP_BB_INT_MAP_REG interrupt map Ox3FF00220 | R/W
DPORT_APP_BT_MAC_INT_MAP_REG interrupt map Ox3FF00224 | R/W
DPORT_APP_BT_BB_INT_MAP_REG interrupt map Ox3FF00228 | R/W
DPORT_APP_BT_BB_NMI_MAP_REG interrupt map Ox3FF0022C | R/W
DPORT_APP_RWBT_IRQ_MAP_REG interrupt map Ox3FF00230 | R/W
DPORT_APP_RWBLE_IRQ_MAP_REG interrupt map Ox3FF00234 | R/W
DPORT_APP_RWBT_NMI_MAP_REG interrupt map Ox3FF00238 | R/W
DPORT_APP_RWBLE_NMI_MAP_REG interrupt map Ox3FF0023C | R/W
DPORT_APP_SLCO_INTR_MAP_REG interrupt map Ox3FF00240 | R/W
DPORT_APP_SLC1_INTR_MAP_REG interrupt map Ox3FF00244 | R/W
DPORT_APP_UHCIO_INTR_MAP_REG interrupt map Ox3FF00248 | R/W
DPORT_APP_UHCI1_INTR_MAP_REG interrupt map Ox3FF0024C | R/W
DPORT_APP_TG_TO_LEVEL_INT_MAP_REG interrupt map Ox3FF00250 | R/W
DPORT_APP_TG_T1_LEVEL_INT_MAP_REG interrupt map Ox3FF00254 | R/W
DPORT_APP_TG_WDT_LEVEL_INT_MAP_REG interrupt map Ox3FF00258 | R/W
DPORT_APP_TG_LACT_LEVEL_INT_MAP_REG interrupt map Ox3FF0025C | R/W
DPORT_APP_TG1_TO_LEVEL_INT_MAP_REG interrupt map Ox3FF00260 | R/W
DPORT_APP_TG1_T1_LEVEL_INT_MAP_REG interrupt map Ox3FF00264 | R/W
DPORT_APP_TG1_WDT_LEVEL_INT_MAP_REG interrupt map Ox3FF00268 | R/W
DPORT_APP_TG1_LACT_LEVEL_INT_MAP_REG interrupt map Ox3FF0026C | R/W
DPORT_APP_GPIO_INTERRUPT_MAP_REG interrupt map Ox3FF00270 | R/W
DPORT_APP_GPIO_INTERRUPT_NMI_MAP_REG interrupt map Ox3FF00274 | R/W
DPORT_APP_CPU_INTR_FROM_CPU_0_MAP_REG | interrupt map Ox3FF00278 | R/W
DPORT_APP_CPU_INTR_FROM_CPU_1_MAP_REG | interrupt map Ox3FF0027C | R/W
DPORT_APP_CPU_INTR_FROM_CPU_2_MAP_REG | interrupt map Ox3FF00280 | R/W
DPORT_APP_CPU_INTR_FROM_CPU_3_MAP_REG | interrupt map Ox3FF00284 | R/W
DPORT_APP_SPI_INTR_O_MAP_REG interrupt map Ox3FF00288 | R/W
DPORT_APP_SPI_INTR_1_MAP_REG interrupt map Ox3FF0028C | R/W
DPORT_APP_SPI_INTR_2_MAP_REG interrupt map Ox3FF00290 | R/W
DPORT_APP_SPI_INTR_3_MAP_REG interrupt map Ox3FF00294 | R/W
DPORT_APP_I2S0_INT_MAP_REG interrupt map Ox3FF00298 | R/W
DPORT_APP_I2S1_INT_MAP_REG interrupt map Ox3FF0029C | R/W
DPORT_APP_UART_INTR_MAP_REG interrupt map Ox3FF002A0 | R/W
DPORT_APP_UART1_INTR_MAP_REG interrupt map Ox3FF002A4 | R/W
DPORT_APP_UART2_INTR_MAP_REG interrupt map Ox3FF002A8 | R/W
DPORT_APP_SDIO_HOST_INTERRUPT_MAP_REG interrupt map Ox3FFO02AC | R/W
DPORT_APP_EMAC_INT_MAP_REG interrupt map Ox3FF002B0O | R/W
DPORT_APP_PWMO_INTR_MAP_REG interrupt map Ox3FF002B4 | R/W
DPORT_APP_PWM1_INTR_MAP_REG interrupt map Ox3FF002B8 | R/W
DPORT_APP_LEDC_INT_MAP_REG interrupt map Ox3FF002C4 | R/W
DPORT_APP_EFUSE_INT_MAP_REG interrupt map Ox3FF002C8 | R/W

Espressif Systems

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Name Description Address Access
DPORT_APP_TWAI_INT_MAP_REG interrupt map Ox3FF002CC | R/W
DPORT_APP_RTC_CORE_INTR_MAP_REG interrupt map Ox3FF002D0 | R/W
DPORT_APP_RMT_INTR_MAP_REG interrupt map Ox3FF002D4 | R/W
DPORT_APP_PCNT_INTR_MAP_REG interrupt map Ox3FF002D8 | R/W
DPORT_APP_I2C_EXTO_INTR_MAP_REG interrupt map Ox3FF002DC | R/W
DPORT_APP_I2C_EXT1_INTR_MAP_REG interrupt map Ox3FFO02EQ0 | R/W
DPORT_APP_RSA_INTR_MAP_REG interrupt map Ox3FFO02E4 | R/W
DPORT_APP_SPIH_DMA_INT_MAP_REG interrupt map Ox3FFO02E8 | R/W
DPORT_APP_SPI2_DMA_INT_MAP_REG interrupt map Ox3FFO02EC | R/W
DPORT_APP_SPI3_DMA_INT_MAP_REG interrupt map Ox3FFO02F0 | R/W
DPORT_APP_WDG_INT_MAP_REG interrupt map Ox3FFO002F4 | R/W
DPORT_APP_TIMER_INT1_MAP_REG interrupt map Ox3FFO02F8 | R/W
DPORT_APP_TIMER_INT2_MAP_REG interrupt map Ox3FFO02FC | R/W
DPORT_APP_TG_TO_EDGE_INT_MAP_REG interrupt map Ox3FFO0300 | R/W
DPORT_APP_TG_T1_EDGE_INT_MAP_REG interrupt map Ox3FF00304 | R/W
DPORT_APP_TG_WDT_EDGE_INT_MAP_REG interrupt map Ox3FF00308 | R/W
DPORT_APP_TG_LACT_EDGE_INT_MAP_REG interrupt map Ox3FF0030C | R/W
DPORT_APP_TG1_TO_EDGE_INT_MAP_REG interrupt map Ox3FF00310 | R/W
DPORT_APP_TG1_T1_EDGE_INT_MAP_REG interrupt map Ox3FF00314 | R/W
DPORT_APP_TG1_WDT_EDGE_INT_MAP_REG interrupt map Ox3FF00318 | R/W
DPORT_APP_TG1_LACT_EDGE_INT_MAP_REG interrupt map Ox3FF0031C | R/W
DPORT_APP_MMU_IA_INT_MAP_REG interrupt map Ox3FF00320 | R/W
DPORT_APP_MPU_IA_INT_MAP_REG interrupt map Ox3FF00324 | R/W
DPORT_APP_CACHE_IA_INT_MAP_REG interrupt map Ox3FF00328 | R/W
DMA registers

selects DMA channel for
DPORT_SPI_DMA_CHAN_SEL_REG Ox3FFO05A8 | R/W

SPI1, SPI2, and SPI3
MPU/MMU registers

determines the virtual
DPORT_PRO_CACHE_CTRL_REG address mode of the external | Ox3FFO0040 | R/W

SRAM

PRO cache MMU
DPORT_PRO_CACHE_CTRL1_REG , , Ox3FF00044 | R/W

configuration

determines the virtual
DPORT_APP_CACHE_CTRL_REG address mode of the external | Ox3FFO0058 | R/W

SRAM
DPORT_APP_CACHE_CTRL1_REG APP cache MMU Ox3FFO005C | RAW

configuration

page size in the MMU for the
DPORT_IMMU_PAGE_MODE_REG , Ox3FF00080 | R/W

internal SRAM 0

page size in the MMU for the
DPORT_DMMU_PAGE_MODE_REG , Ox3FF00084 | R/W

internal SRAM 2
DPORT_AHB_MPU_TABLE_0_REG MPU for configuring DMA Ox3FFO00B4 | R/W
DPORT_AHB_MPU_TABLE_1_REG MPU for configuring DMA Ox3FFO00B8 | R/W

Espressif Systems

ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Name Description Address Access
DPORT_AHBLITE_MPU_TABLE_UART_REG MPU for peripherals Ox3FF0032C | R/W
DPORT_AHBLITE_MPU_TABLE_SPI1_REG MPU for peripherals Ox3FF00330 | R/W
DPORT_AHBLITE_MPU_TABLE_SPIO_REG MPU for peripherals Ox3FF00334 | R/W
DPORT_AHBLITE_MPU_TABLE_GPIO_REG MPU for peripherals Ox3FF00338 | R/W
DPORT_AHBLITE_MPU_TABLE_RTC_REG MPU for peripherals Ox3FF00348 | R/W
DPORT_AHBLITE_MPU_TABLE_IO_MUX_REG MPU for peripherals Ox3FF0034C | R/W
DPORT_AHBLITE_MPU_TABLE_HINF_REG MPU for peripherals Ox3FF00354 | R/W
DPORT_AHBLITE_MPU_TABLE_UHCI1_REG MPU for peripherals Ox3FF00358 | R/W
DPORT_AHBLITE_MPU_TABLE_I2S0_REG MPU for peripherals Ox3FF00364 | R/W
DPORT_AHBLITE_MPU_TABLE_UART1_REG MPU for peripherals Ox3FF00368 | R/W
DPORT_AHBLITE_MPU_TABLE_I2C_EXTO_REG MPU for peripherals Ox3FF00374 | R/W
DPORT_AHBLITE_MPU_TABLE_UHCIO_REG MPU for peripherals Ox3FF00378 | R/W
DPORT_AHBLITE_MPU_TABLE_SLCHOST_REG MPU for peripherals Ox3FF0037C | R/W
DPORT_AHBLITE_MPU_TABLE_RMT_REG MPU for peripherals Ox3FF00380 | R/W
DPORT_AHBLITE_MPU_TABLE_PCNT_REG MPU for peripherals Ox3FF00384 | R/W
DPORT_AHBLITE_MPU_TABLE_SLC_REG MPU for peripherals Ox3FF00388 | R/W
DPORT_AHBLITE_MPU_TABLE_LEDC_REG MPU for peripherals Ox3FF0038C | R/W
DPORT_AHBLITE_MPU_TABLE_EFUSE_REG MPU for peripherals Ox3FF00390 | R/W
DPORT_AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG | MPU for peripherals Ox3FF00394 | R/W
DPORT_AHBLITE_MPU_TABLE_PWMO_REG MPU for peripherals Ox3FF0039C | R/W
DPORT_AHBLITE_MPU_TABLE_TIMERGROUP_REG | MPU for peripherals Ox3FFO03A0 | RW
DPORT_AHBLITE_MPU_TABLE_TIMERGROUP1_REG| T 10" Peripherals Ox3FFO03A4 | RAW
DPORT_AHBLITE_MPU_TABLE_SPI2_REG MPU for peripherals Ox3FFO03A8 | R/W
DPORT_AHBLITE_MPU_TABLE_SPI3_REG MPU for peripherals Ox3FFO0SAC | RW
DPORT_AHBLITE_MPU_TABLE_APB_CTRL_REG MPU for peripherals Ox3FFO03BO | R/W
DPORT_AHBLITE_MPU_TABLE_I2C_EXT1_REG MPU for peripherals Ox3FFO03B4 | R/W
DPORT_AHBLITE_MPU_TABLE_SDIO_HOST_REG MPU for peripherals Ox3FF003B8 | R/W
DPORT_AHBLITE_MPU_TABLE_EMAC_REG MPU for peripherals Ox3FF0O03BC | R/W
DPORT_AHBLITE_MPU_TABLE_PWM1_REG MPU for peripherals Ox3FFO03C4 | RW
DPORT_AHBLITE_MPU_TABLE_I2S1_REG MPU for peripherals Ox3FF003C8 | R/W
DPORT_AHBLITE_MPU_TABLE_UART2_REG MPU for peripherals Ox3FFO03CC | R/W
DPORT_AHBLITE_MPU_TABLE_PWR_REG MPU for peripherals Ox3FFO03E4 | R/W
DPORT IMMU_TABLEO_REG MMU register 1 forinternal | o 3ro0s04 | RAW

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLE1_REG Ox3FF00508 | R/W

SRAM 0

MMU register 1 for Internal
DPORT_IMMU_TABLE2_REG Ox3FF0050C | R/W

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLE3_REG Ox3FF00510 | R/W

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLE4_REG Ox3FF00514 | R/W

SRAM 0O

Espressif Systems 98

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Name Description Address Access

MMU register 1 for internal
DPORT_IMMU_TABLES_REG Ox3FF00518 | R/W

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLEG_REG Ox3FF0051C | R/W

SRAM 0O

MMU register 1 for internal
DPORT_IMMU_TABLE7_REG Ox3FF00520 | R/W

SRAM 0O

MMU register 1 for internal
DPORT_IMMU_TABLES_REG Ox3FF00524 | R/W

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLE9_REG Ox3FF00528 | R/W

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLE10_REG Ox3FF0052C | R/W

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLE11_REG Ox3FF00530 | R/W

SRAM 0

MMU register 1 for Internal
DPORT_IMMU_TABLE12_REG Ox3FF00534 | R/W

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLE13_REG Ox3FF00538 | R/W

SRAM 0O

MMU register 1 for internal
DPORT_IMMU_TABLE14_REG Ox3FF0053C | R/W

SRAM 0

MMU register 1 for internal
DPORT_IMMU_TABLE15_REG Ox3FF00540 | R/W

SRAM 0

MMU register 1 for Internal
DPORT_DMMU_TABLEO_REG Ox3FF00544 | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLE1_REG Ox3FF00548 | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLE2_REG Ox3FF0054C | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLES_REG Ox3FF00550 | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLE4_REG Ox3FF00554 | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLES_REG Ox3FF00558 | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLEG_REG Ox3FF0055C | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLE7_REG Ox3FF00560 | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLES_REG Ox3FF00564 | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLE9_REG Ox3FF00568 | R/W

SRAM 2

MMU register 1 for internal
DPORT_DMMU_TABLE10_REG Ox3FF0056C | R/W

SRAM 2

Espressif Systems

99

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Name Description Address Access
MMU register 1 for internal
DPORT_DMMU_TABLE11_REG Ox3FF00570 | R/W
SRAM 2
MMU register 1 for internal
DPORT_DMMU_TABLE12_REG Ox3FF00574 | R/W
SRAM 2
MMU register 1 for internal
DPORT_DMMU_TABLE13_REG Ox3FF00578 | R/W
SRAM 2
MMU register 1 for internal
DPORT_DMMU_TABLE14_REG Ox3FF0057C | R/W
SRAM 2
MMU register 1 for internal
DPORT_DMMU_TABLE15_REG Ox3FF00580 | R/W
SRAM 2
APP_CPU controller registers
DPORT_APPCPU_CTRL_REG_A_REG reset for APP_CPU Ox3FF0002C | R/W
DPORT_APPCPU_CTRL_REG_B_REG clock gate for APP_CPU Ox3FF00030 | R/W
DPORT_APPCPU_CTRL_REG_C_REG stall for APP_CPU Ox3FF00034 | R/W
DPORT_APPCPU_CTRL_REG_D_REG boot address for APP_CPU Ox3FF00038 | R/W
Peripheral clock gating and reset registers
DPORT_PERI_CLK_EN_REG clock gate for peripherals Ox3FFO001C | R/W
DPORT_PERI_RST_EN_REG reset for peripherals Ox3FFO0020 | R/W
DPORT_PERIP_CLK_EN_REG clock gate for peripherals Ox3FFO00CO | R/W
DPORT_PERIP_RST_EN_REG reset for peripherals Ox3FFO00C4 | R/W
DPORT_WIFI_CLK_EN_REG clock gate for Wi-Fi Ox3FFO00CC | R/W
DPORT_WIFI_RST_EN_REG reset for Wi-Fi Ox3FFO00DO | R/W

Espressif Systems

100

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

5.5 Registers

The addresses in parenthesis besides register names are the register addresses relative to the DPORT base ad-
dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register
addresses are listed in Section 5.4 Register Summary.

Register 5.1. DPORT_PRO_BOOT_REMAP_CTRL_REG (0x000)

Q
?»
&
O&/
o
@b\ &/Q
Q)é OQ\
N &
‘31 1 0‘
\oooooooooooooooooooooooooooooooo\Reset
DPORT_PRO_BOOT_REMAP Remap mode for PRO_CPU. (R/W)
Register 5.2. DPORT_APP_BOOT_REMAP_CTRL_REG (0x004)
R
?\
&Q
A/
OO
Q/
Q)& &?{2
I &
@ &
\31 1| 0 \
\ooooooooooooooooooooooooooooooo|o\Reset
DPORT_APP_BOOT_REMAP Remap mode for APP_CPU. (R/W)
Espressif Systems 101 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.3. DPORT_PERI_CLK_EN_REG (0x01C)

Q@V‘%\Q\V‘V(é‘o
@/@/@/
Q\/Q\/Q\/
N & &K
&7 L7
N FES
‘31 3 2 1 0 ‘

\ooooooooooooooooooooooooooooooooo\Rese»c

DPORT_PERI_EN_RSA Set the bit to enable the clock of RSA module. Clear the bit to disable the
clock of RSA module. (R/W)

DPORT_PERI_EN_SHA Set the bit to enable the clock of SHA module. Clear the bit to disable the
clock of SHA module. (R/W)

DPORT_PERI_EN_AES Set the bit to enable the clock of AES module. Clear the bit to disable the
clock of AES module. (R/W)

Register 5.4. DPORT_PERI_RST_EN_REG (0x020)

)
© QIR K
(%) O O O

& S

2

‘31 3|

DPORT_PERI_RST_RSA Set the bit to reset RSA module. Clear the bit to release RSA module.
(R/W)

DPORT_PERI_RST_SHA Set the bit to reset SHA module. Clear the bit to release SHA module.
(R/W)

DPORT_PERI_RST_AES Set the bit to reset AES module. Clear the bit to release AES module. (R/W)

Register 5.5. DPORT_APPCPU_CTRL_REG_A_REG (0x02C)

=
&
QX7
e
QQ
S <5
& OQ\
& N
\31 1| 0 \
\ooooooooooooooooooooooooooooooo|1\Reset
DPORT_APPCPU_RESETTING Setto 1toreset APP_CPU. Clear the bit to release APP_CPU. (R/W)
Espressif Systems 102 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.6. DPORT_APPCPU_CTRL_REG_B_REG (0x030)

DPORT_APPCPU_CLKGATE_EN Set to 1 to enable the clock of APP_CPU. Clear the bit to disable
the clock of APP_CPU. (R/W)

Register 5.7. DPORT_APPCPU_CTRL_REG_C_REG (0x034)

E o]

[o]
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

0 000 0 O 0|0‘Reset

DPORT_APPCPU_RUNSTALL Set to 1 to put APP_CPU into stalled state. Clear the bit to release
APP_CPU from stalled state. (R/W)

Register 5.8. DPORT_APPCPU_CTRL_REG_D_REG (0x038)

E]

’ 0x000000000 \ Reset

DPORT_APPCPU_CTRL_REG_D_REG When APP_CPU is booted up with ROM code, it will jump
to the address stored in this register. (R/W)

Espressif Systems 103 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.9. DPORT_CPU_PER_CONF_REG (0x03C)

DPORT_CPU_CPUPERIOD_SEL Select CPU clock. Refer to Table 3-3 for details. (R/W)

Register 5.10. DPORT_PRO_CACHE_CTRL_REG (0x040)

(A
\@%@

DPORT_PRO_DRAM_HL Determines the virtual address mode of the external SRAM. (R/W)
DPORT_PRO_DRAM_SPLIT Determines the virtual address mode of the external SRAM. (R/W)

DPORT_PRO_SINGLE_IRAM_ENA Determines a special mode for PRO_CPU access to the external
flash. (R/W)

DPORT_PRO_CACHE_FLUSH_DONE PRO_CPU cache-flush done. (RO)
DPORT_PRO_CACHE_FLUSH_ENA Flushes the PRO_CPU cache. (R/W)

DPORT_PRO_CACHE_ENABLE Enables the PRO_CPU cache. (R/W)

Espressif Systems 104 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.11. DPORT_PRO_CACHE_CTRL1_REG (0x044)

Ao o
N SRR ©
STEELLE
¥ AT O
A (Ov%v% sv(;\vjv%
\2\/0/ \2\/ /\2\/\2\/\2\/\2\/
OO P
LKL QPLPLOLOLLL”
N g S FE LS
@ K787 @ N7 AN AN A7 N7 N7
8 S8 IS SELLLE
5 S & L L L LS
NS S N SERESESEOES
‘31 14 | 13 12 |11 6 5 4 3 2 1 0‘
\ooooooooooooooooooooo00000111111\Re5et

DPORT_PRO_CACHE_MMU_IA_CLR Clears PRO cache MMU error flag. (R/W)
DPORT_PRO_CMMU_PD Disables PRO cache MMU. (R/W)

DPORT_PRO_CACHE_MASK_OPSDRAM Disables access from APP_CPU DRAM1 to PRO cache.
1: Disable
0: Enable

(R/W)

DPORT_PRO_CACHE_MASK_DROMO Disables access from PRO_CPU DROMO to PRO cache.
1: Disable
0: Enable

(R/W)

DPORT_PRO_CACHE_MASK_DRAM1 Disables access from PRO_CPU DRAM1 to PRO cache.
1: Disable
0: Enable
RW)

DPORT_PRO_CACHE_MASK_IROMO Disables access from PRO_CPU IROMO to PRO cache.
1: Disable
0: Enable

(R/W)

DPORT_PRO_CACHE_MASK_IRAM1 Disables access from PRO_CPU IRAM1 to PRO cache.
1: Disable
0: Enable
R/W)

DPORT_PRO_CACHE_MASK_IRAMO Disables access from PRO_CPU IRAMO to PRO cache.
1: Disable
0: Enable

(R/W)

Espressif Systems 105 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.12. DPORT_APP_CACHE_CTRL_REG (0x058)

S
v S
<« @@ &’@Y\(’O@&
I S
) J &7 N IA 4
Q?“@ QQY@@@/ ?\0\2\?@2\?@\2\
5 ??Q/& ??Q/Q/ N §Q§*2Q/QQ/ N
T PP S S
@ S ¢ @ FEE @
‘31 15|14|13 12|11|10|9 6|5|4|3|2 0‘
\ooooooooooooooooo|o|o o|o|o|o 0 o 0|o|1|o|o 0 O‘Reset

DPORT_APP_DRAM_HL Determines the virtual address mode of the External SRAM. (R/W)
DPORT_APP_DRAM_SPLIT Determines the virtual address mode of the External SRAM. (R/W)

DPORT_APP_SINGLE_IRAM_ENA Determines a special mode for APP_CPU access to the external
flash. (R/W)

DPORT_APP_CACHE_FLUSH_DONE APP_CPU cache-flush done. (RO)
DPORT_APP_CACHE_FLUSH_ENA Flushes the APP_CPU cache. (R/W)

DPORT_APP_CACHE_ENABLE Enables the APP_CPU cache. (R/W)

Espressif Systems 106 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.13. DPORT_APP_CACHE_CTRL1_REG (0x05C)

o
& S
0’ Q%QQO®Q§O®QV &
Nad \L_/O\L_/ \1_5)\1_.> N s
o Crcer
<<// Q// Q// Q// (<,/ (<,/ Q//
X $¥O g SNONONONNN
s F R T T X X
Q/Q/ Q/Q/Q/Q/Q/Q/
5 ERN LELLEY
e Y S Y Y
g &L & SEFSELIES
g S NS Q X
‘31 14|13|12|11 6|5|4|3|2|1|0‘
\oooooooooooooooooo|o|o|oooooo|1|1|1|1|1|1\Reset

DPORT_APP_CACHE_MMU_IA_CLR Clears APP cache MMU error flag. (R/W)
DPORT_APP_CMMU_PD Disables APP cache MMU. (R/W)

DPORT_APP_CACHE_MASK_OPSDRAM Disables access from PRO_CPU DRAM1 to APP cache.
1: Disable
0: Enable
R/W)

DPORT_APP_CACHE_MASK_DROMO Disables access from APP_CPU DROMO to APP cache.
1: Disable
0: Enable

(R/W)

DPORT_APP_CACHE_MASK DRAM1 Disables access from APP_CPU DRAM1 to APP cache.
1: Disable
0: Enable

(R/W)

DPORT_APP_CACHE_MASK_IROMO Disables access from APP_CPU IROMO to APP cache.
1: Disable
0: Enable
RW)

DPORT_APP_CACHE_MASK_ IRAM1 Disables access from APP_CPU IRAM1 to APP cache.
1: Disable
0: Enable

(R/W)

DPORT_APP_CACHE_MASK_IRAMO Disables access from APP_CPU IRAMO to APP cache.
1: Disable
0: Enable
RW)

Espressif Systems 107 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

B

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.14. DPORT_CACHE_MUX_MODE_REG (0x07C)

Sf
D
S
©
Q:& /\9
& &
Q
N Q
’31 2|1 0‘
]ooooooooooooooooooooooooooooooo o\Reset
DPORT_CACHE_MUX_MODE The mode of the two caches sharing the memory. (R/W)
Register 5.15. DPORT_IMMU_PAGE_MODE_REG (0x080)
s
(<//
XG
N
Q)& ’\>®®Q)®
& &S
o))
N S @
]oooooooooooooooooooooooooooooo oo\Reset
DPORT_IMMU_PAGE_MODE Page size in the MMU for the internal SRAM 0. (R/W)
Register 5.16. DPORT_DMMU_PAGE_MODE_REG (0x084)
N
@OQ
<7
&
@*\0/
Q)& &9 @b\
s §$ &

DPORT_DMMU_PAGE_MODE Page size in the MMU for the internal SRAM 2. (R/W)

Register 5.17. DPORT_AHB_MPU_TABLE_0_REG (0x0B4)

’ OXFFFFFFFF |Reset

DPORT_AHB_MPU_TABLE_0_REG MPU for DMA. (R/W)

Espressif Systems 108 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.18. DPORT_AHB_MPU_TABLE_1_REG (0x0B8)

&’\
e/
?\
&
QC’@
v
P’
S <5
o RA
& &
‘31 9|8 0‘
\ooooooooooooooooooooooo| Ox1FF \Reset
DPORT_AHB_ACCESS_GRANT_1 MPU for DMA. (R/W)
Espressif Systems 109 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.19. DPORT_PERIP_CLK_EN_REG (0x0C0)

[t Jofofrft]t]ofofoJofofrfr]r]1]ofo]o]o

Set the following bit to enable the clock of the corresponding module. Clear the bit to disable the clock
of the corresponding module.

DPORT_UART_MEM_CLK_EN Shared memory of UARTO ~ 2. To use any UART peripherals, enable
the clock for UART memory. (R/W)

DPORT_UART2_CLK_EN UART2 module. (R/W)
DPORT_SPI_DMA_CLK_EN SPI_DMA module. (R/W)
DPORT_I2S1_CLK_EN 1251 module. (R/W)
DPORT_PWM1_CLK_EN PWM1 module. (R/W)
DPORT_TWAI_CLK_EN TWAI module. (R/W)
DPORT_I2C_EXT1_CLK_EN [2C1 module. (R/W)
DPORT_PWMO_CLK_EN PWMO module. (R/W)
DPORT_SPI3_CLK_EN SPI3 module. (R/W)
DPORT_TIMERGROUP1_CLK_EN TIMG1 module. (R/W)
DPORT_EFUSE_CLK_EN eFuse module. (R/W)
DPORT_TIMERGROUP_CLK_EN TIMGO module. (R/W)
DPORT_UHCI1_CLK_EN UDMA1 module. (R/W)
DPORT_LEDC_CLK_EN LEDC module. (R/W)
DPORT_PCNT_CLK_EN PCNT module. (R/W)
DPORT_RMT_CLK_EN RMT module. (R/W)
DPORT_UHCIO_CLK_EN UDMAQ module. (R/W)
DPORT_I2C_EXTO0_CLK_EN 12C0 module. (R/W)
DPORT_SPI2_CLK_EN SPI2 module. (R/W)

Continued on the next page...

Espressif Systems 110 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.19. DPORT_PERIP_CLK_EN_REG (0x0C0)

Continued from the previous page...
DPORT_UART1_CLK_EN UART1 module. (R/W)
DPORT_I2S0_CLK_EN 1250 module. (R/W)
DPORT_UART_CLK_EN UARTO module. (R/W)

DPORT_SPIO1_CLK_EN SPIO and SPI1 module. (R/W)

Register 5.20. DPORT_PERIP_RST_EN_REG (0x0C4)

\ 00000 |o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|0|o|o

Set each bit to reset the corresponding module. Clear the bit to release the corresponding module. For the list of
modules, please refer to register 5.19.

Register 5.21. DPORT_WIFI_CLK_EN_REG (0x0CC)

& &
&L F
(XY S
oo o
<)
N ¥
N/ N/ N/
S £ S &4
Q K7 K7 Q& K7 Q;b
o S8 o 8
@ S @ I @
‘ 31 15 | 14 13 | 12 5 4 3 0 ‘
‘1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1)1 1f0 o o o0 0 O O 110 O O O‘Reset

DPORT_WIFI_CLK_EMAC_EN Set the bit to enable the clock of Ethernet MAC module. Clear the
bit to disable the clock of Ethernet MAC module. (R/W)

DPORT_WIFI_CLK_SDIO_HOST_EN Set the bit to enable the clock of SD/MMC module. Clear the
bit to disable the clock of SD/MMC module. (R/W)

DPORT_WIFI_CLK_SDIOSLAVE_EN Set the bit to enable the clock of SDIO module. Clear the bit
to disable the clock of SDIO module. (R/W)

Espressif Systems 111 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.22. DPORT_WIFI_RST_EN_REG (0x0DO0)

DPORT_EMAC_RST Set the bit to reset Ethernet MAC module. Clear the bit to release Ethernet
MAC module. (R/W)

DPORT_SDIO_HOST_RST Set the bit to reset SD/MMC module. Clear the bit to release SD/MMC
module. (R/W)

DPORT_SDIO_RST Set the bit to reset SDIO module. Clear the bit to release SDIO module. (R/W)

Register 5.23. DPORT_CPU_INTR_FROM_CPU_/_REG (/: 0-3) (0OxDC+4*n)

N
@g)q
@)
<<Q‘
&7
S
) /\oQ
Q)AZJ &7
& L
A Q

]oooooooooooooooooooooooooooooooo\Reset

DPORT_CPU_INTR_FROM_CPU_n Interrupt in both CPUs. (R/W)

Register 5.24. DPORT_PRO_INTR_STATUS_REG__REG (: 0-2) (OXEC+4")

’ 0x000000000 \ Reset

DPORT_PRO_INTR_STATUS_REG_n_REG PRO_CPU interrupt status. (RO)

Register 5.25. DPORT_APP_INTR_STATUS_REG_n_REG (1: 0-2) (0xF8+4*n)

’ 0x000000000 \ Reset

DPORT_APP_INTR_STATUS_REG_n_REG APP_CPU interrupt status. (RO)

Espressif Systems 112 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.26. DPORT_PRO_MAC_INTR_MAP_REG (0x104)
Register 5.27. DPORT_PRO_MAC_NMI_MAP_REG (0x108)
Register 5.28. DPORT_PRO_BB_INT_MAP_REG (0x10C)

Register 5.29. DPORT_PRO_BT_MAC_INT_MAP_REG (0x110)
Register 5.30. DPORT_PRO_BT_BB_INT_MAP_REG (0x114)
Register 5.31. DPORT_PRO_BT_BB_NMI_MAP_REG (0x118)
Register 5.32. DPORT_PRO_RWBT_IRQ_MAP_REG (0x11C)
Register 5.33. DPORT_PRO_RWBLE_IRQ_MAP_REG (0x120)
Register 5.34. DPORT_PRO_RWBT_NMI_MAP_REG (0x124)
Register 5.35. DPORT_PRO_RWBLE_NMI_MAP_REG (0x128)
Register 5.36. DPORT_PRO_SLCO_INTR_MAP_REG (0x12C)
Register 5.37. DPORT_PRO_SLC1_INTR_MAP_REG (0x130)
Register 5.38. DPORT_PRO_UHCIO_INTR_MAP_REG (0x134)
Register 5.39. DPORT_PRO_UHCI1_INTR_MAP_REG (0x138)
Register 5.40. DPORT_PRO_TG_TO_LEVEL_INT_MAP_REG (0x13C)
Register 5.41. DPORT_PRO_TG_T1_LEVEL_INT_MAP_REG (0x140)
Register 5.42. DPORT_PRO_TG_WDT_LEVEL_INT_MAP_REG (0x144)
Register 5.43. DPORT_PRO_TG_LACT_LEVEL_INT_MAP_REG (0x148)
Register 5.44. DPORT_PRO_TG1_TO_LEVEL_INT_MAP_REG (0x14C)
Register 5.45. DPORT_PRO_TG1_T1_LEVEL_INT_MAP_REG (0x150)
Register 5.46. DPORT_PRO_TG1_WDT_LEVEL_INT_MAP_REG (0x154)
Register 5.47. DPORT_PRO_TG1_LACT_LEVEL_INT_MAP_REG (0x158)
Register 5.48. DPORT_PRO_GPIO_INTERRUPT_MAP_REG (0x15C)
Register 5.49. DPORT_PRO_GPIO_INTERRUPT_NMI_MAP_REG (0x160)
Register 5.50. DPORT_PRO_CPU_INTR_FROM_CPU_0_MAP_REG (0x164)
Register 5.51. DPORT_PRO_CPU_INTR_FROM_CPU_1_MAP_REG (0x168)
Register 5.52. DPORT_PRO_CPU_INTR_FROM_CPU_2_MAP_REG (0x16C)
Register 5.53. DPORT_PRO_CPU_INTR_FROM_CPU_3_MAP_REG (0x170)
Register 5.54. DPORT_PRO_SPI_INTR_0_MAP_REG (0x174)
Register 5.55. DPORT_PRO_SPI_INTR_1_MAP_REG (0x178)
Register 5.56. DPORT_PRO_SPI_INTR_2_MAP_REG (0x17C)
Register 5.57. DPORT_PRO_SPI_INTR_3_MAP_REG (0x180)
Register 5.58. DPORT_PRO_I2S0_INT_MAP_REG (0x184)
Register 5.59. DPORT_PRO_I2S1_INT_MAP_REG (0x188)
Register 5.60. DPORT_PRO_UART_INTR_MAP_REG (0x18C)

Espressif Systems 113 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.61. DPORT_PRO_UART1_INTR_MAP_REG (0x190)
Register 5.62. DPORT_PRO_UART2_INTR_MAP_REG (0x194)
Register 5.63. DPORT_PRO_SDIO_HOST_INTERRUPT_MAP_REG (0x198)
Register 5.64. DPORT_PRO_EMAC_INT_MAP_REG (0x19C)
Register 5.65. DPORT_PRO_PWMO_INTR_MAP_REG (0x1A0)
Register 5.66. DPORT_PRO_PWM1_INTR_MAP_REG (0x1A4)
Register 5.67. DPORT_PRO_LEDC_INT_MAP_REG (0x1B0)
Register 5.68. DPORT_PRO_EFUSE_INT_MAP_REG (0x1B4)
Register 5.69. DPORT_PRO_TWAI_INT_MAP_REG (0x1B8)
Register 5.70. DPORT_PRO_RTC_CORE_INTR_MAP_REG (0x1BC)
Register 5.71. DPORT_PRO_RMT_INTR_MAP_REG (0x1C0)
Register 5.72. DPORT_PRO_PCNT_INTR_MAP_REG (0x1C4)
Register 5.73. DPORT_PRO_I2C_EXTO_INTR_MAP_REG (0x1C8)
Register 5.74. DPORT_PRO_I2C_EXT1_INTR_MAP_REG (0x1CC)
Register 5.75. DPORT_PRO_RSA_INTR_MAP_REG (0x1D0)
Register 5.76. DPORT_PRO_SPI1_DMA_INT_MAP_REG (0x1D4)
Register 5.77. DPORT_PRO_SPI2_DMA_INT_MAP_REG (0x1D8)
Register 5.78. DPORT_PRO_SPI3_DMA_INT_MAP_REG (0x1DC)
Register 5.79. DPORT_PRO_WDG_INT_MAP_REG (0x1EOQ)
Register 5.80. DPORT_PRO_TIMER_INT1_MAP_REG (0x1E4)
Register 5.81. DPORT_PRO_TIMER_INT2_MAP_REG (0x1ES8)
Register 5.82. DPORT_PRO_TG_TO0_EDGE_INT_MAP_REG (0x1EC)
Register 5.83. DPORT_PRO_TG_T1_EDGE_INT_MAP_REG (0x1FO0)
Register 5.84. DPORT_PRO_TG_WDT_EDGE_INT_MAP_REG (0x1F4)
Register 5.85. DPORT_PRO_TG_LACT_EDGE_INT_MAP_REG (0x1F8)
Register 5.86. DPORT_PRO_TG1_TO_EDGE_INT_MAP_REG (0x1FC)
Register 5.87. DPORT_PRO_TG1_T1_EDGE_INT_MAP_REG (0x200)
Register 5.88. DPORT_PRO_TG1_WDT_EDGE_INT_MAP_REG (0x204)
Register 5.89. DPORT_PRO_TG1_LACT_EDGE_INT_MAP_REG (0x208)
Register 5.90. DPORT_PRO_MMU_IA_INT_MAP_REG (0x20C)
Register 5.91. DPORT_PRO_MPU_IA_INT_MAP_REG (0x210)
Register 5.92. DPORT_PRO_CACHE_IA_INT_MAP_REG (0x214)

@?‘
o’
Q)b\ &/Q\
X Rs
& &
‘31 5|4 0‘
\ooooooooooooooooooooooooooo| 10000 \Reset
DPORT_PRO_*_MAP Interrupt map. (R/W)
114 ESP32 TRM (Version 5.0)

Espressif Systems
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.93. DPORT_APP_MAC_INTR_MAP_REG (0x218)
Register 5.94. DPORT_APP_MAC_NMI_MAP_REG (0x21C)
Register 5.95. DPORT_APP_BB_INT_MAP_REG (0x220)

Register 5.96. DPORT_APP_BT_MAC_INT_MAP_REG (0x224)
Register 5.97. DPORT_APP_BT_BB_INT_MAP_REG (0x228)
Register 5.98. DPORT_APP_BT_BB_NMI_MAP_REG (0x22C)
Register 5.99. DPORT_APP_RWBT_IRQ_MAP_REG (0x230)
Register 5.100. DPORT_APP_RWBLE_IRQ_MAP_REG (0x234)
Register 5.101. DPORT_APP_RWBT_NMI_MAP_REG (0x238)
Register 5.102. DPORT_APP_RWBLE_NMI_MAP_REG (0x23C)
Register 5.103. DPORT_APP_SLCO_INTR_MAP_REG (0x240)
Register 5.104. DPORT_APP_SLC1_INTR_MAP_REG (0x244)
Register 5.105. DPORT_APP_UHCIO_INTR_MAP_REG (0x248)
Register 5.106. DPORT_APP_UHCI1_INTR_MAP_REG (0x24C)
Register 5.107. DPORT_APP_TG_TO_LEVEL_INT_MAP_REG (0x250)
Register 5.108. DPORT_APP_TG_T1_LEVEL_INT_MAP_REG (0x254)
Register 5.109. DPORT_APP_TG_WDT_LEVEL_INT_MAP_REG (0x258)
Register 5.110. DPORT_APP_TG_LACT_LEVEL_INT_MAP_REG (0x25C)
Register 5.111. DPORT_APP_TG1_TO_LEVEL_INT_MAP_REG (0x260)
Register 5.112. DPORT_APP_TG1_T1_LEVEL_INT_MAP_REG (0x264)
Register 5.113. DPORT_APP_TG1_WDT_LEVEL_INT_MAP_REG (0x268)
Register 5.114. DPORT_APP_TG1_LACT_LEVEL_INT_MAP_REG (0x26C)
Register 5.115. DPORT_APP_GPIO_INTERRUPT_MAP_REG (0x270)
Register 5.116. DPORT_APP_GPIO_INTERRUPT_NMI_MAP_REG (0x274)
Register 5.117. DPORT_APP_CPU_INTR_FROM_CPU_0_MAP_REG (0x278)
Register 5.118. DPORT_APP_CPU_INTR_FROM_CPU_1_MAP_REG (0x27C)
Register 5.119. DPORT_APP_CPU_INTR_FROM_CPU_2_MAP_REG (0x280)
Register 5.120. DPORT_APP_CPU_INTR_FROM_CPU_3_MAP_REG (0x284)
Register 5.121. DPORT_APP_SPI_INTR_0_MAP_REG (0x288)
Register 5.122. DPORT_APP_SPI_INTR_1_MAP_REG (0x28C)
Register 5.123. DPORT_APP_SPI_INTR_2_MAP_REG (0x290)
Register 5.124. DPORT_APP_SPI_INTR_3_MAP_REG (0x294)
Register 5.125. DPORT_APP_I2S0_INT_MAP_REG (0x298)
Register 5.126. DPORT_APP_I2S1_INT_MAP_REG (0x29C)
Register 5.127. DPORT_APP_UART_INTR_MAP_REG (0x2A0)

Espressif Systems 115 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.128. DPORT_APP_UART1_INTR_MAP_REG (0x2A4)
Register 5.129. DPORT_APP_UART2_INTR_MAP_REG (0x2A8)
Register 5.130. DPORT_APP_SDIO_HOST_INTERRUPT_MAP_REG (0x2AC)
Register 5.131. DPORT_APP_EMAC_INT_MAP_REG (0x2B0)
Register 5.132. DPORT_APP_PWMO_INTR_MAP_REG (0x2B4)
Register 5.133. DPORT_APP_PWM1_INTR_MAP_REG (0x2B8)
Register 5.134. DPORT_APP_LEDC_INT_MAP_REG (0x2C4)
Register 5.135. DPORT_APP_EFUSE_INT_MAP_REG (0x2C8)
Register 5.136. DPORT_APP_TWAI_INT_MAP_REG (0x2CC)
Register 5.137. DPORT_APP_RTC_CORE_INTR_MAP_REG (0x2D0)
Register 5.138. DPORT_APP_RMT_INTR_MAP_REG (0x2D4)
Register 5.139. DPORT_APP_PCNT_INTR_MAP_REG (0x2D8)
Register 5.140. DPORT_APP_I2C_EXTO_INTR_MAP_REG (0x2DC)
Register 5.141. DPORT_APP_I2C_EXT1_INTR_MAP_REG (0x2E0)
Register 5.142. DPORT_APP_RSA_INTR_MAP_REG (0x2E4)
Register 5.143. DPORT_APP_SPI1_DMA_INT_MAP_REG (0x2ES8)
Register 5.144. DPORT_APP_SPI2_DMA_INT_MAP_REG (0x2EC)
Register 5.145. DPORT_APP_SPI3_DMA_INT_MAP_REG (0x2F0)
Register 5.146. DPORT_APP_WDG_INT_MAP_REG (0x2F4)
Register 5.147. DPORT_APP_TIMER_INT1_MAP_REG (0x2F8)
Register 5.148. DPORT_APP_TIMER_INT2_MAP_REG (0x2FC)
Register 5.149. DPORT_APP_TG_TO_EDGE_INT_MAP_REG (0x300)
Register 5.150. DPORT_APP_TG_T1_EDGE_INT_MAP_REG (0x304)
Register 5.151. DPORT_APP_TG_WDT_EDGE_INT_MAP_REG (0x308)
Register 5.152. DPORT_APP_TG_LACT_EDGE_INT_MAP_REG (0x30C)
Register 5.153. DPORT_APP_TG1_T0_EDGE_INT_MAP_REG (0x310)
Register 5.154. DPORT_APP_TG1_T1_EDGE_INT_MAP_REG (0x314)
Register 5.155. DPORT_APP_TG1_WDT_EDGE_INT_MAP_REG (0x318)
Register 5.156. DPORT_APP_TG1_LACT_EDGE_INT_MAP_REG (0x31C)
Register 5.157. DPORT_APP_MMU_IA_INT_MAP_REG (0x320)
Register 5.158. DPORT_APP_MPU_IA_INT_MAP_REG (0x324)
Register 5.159. DPORT_APP_CACHE_IA_INT_MAP_REG (0x328)

v
<z$y
7/
<
Q)b\ &Y
o &
& L
NS Q
‘31 5|4 0‘
\ooooooooooooooooooooooooooo| 10000 \Reset

DPORT_APP_*_MAP Interrupt map. (R/W)

Espressif Systems 116 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.160. DPORT_AHBLITE_MPU_TABLE_UART_REG (0x32C)
Register 5.161. DPORT_AHBLITE_MPU_TABLE_SPI1_REG (0x330)
Register 5.162. DPORT_AHBLITE_MPU_TABLE_SPI0O_REG (0x334)
Register 5.163. DPORT_AHBLITE_MPU_TABLE_GPIO_REG (0x338)
Register 5.164. DPORT_AHBLITE_MPU_TABLE_RTC_REG (0x348)

Register 5.165. DPORT_AHBLITE_MPU_TABLE_IO_MUX_REG (0x34C)

Register 5.166. DPORT_AHBLITE_MPU_TABLE_HINF_REG (0x354)

Register 5.167. DPORT_AHBLITE_MPU_TABLE_UHCI1_REG (0x358)
Register 5.168. DPORT_AHBLITE_MPU_TABLE_I2S0_REG (0x364)
Register 5.169. DPORT_AHBLITE_MPU_TABLE_UART1_REG (0x368)
Register 5.170. DPORT_AHBLITE_MPU_TABLE_I12C_EXTO_REG (0x374)
Register 5.171. DPORT_AHBLITE_MPU_TABLE_UHCIO_REG (0x378)
Register 5.172. DPORT_AHBLITE_MPU_TABLE_SLCHOST_REG (0x37C)
Register 5.173. DPORT_AHBLITE_MPU_TABLE_RMT_REG (0x380)
Register 5.174. DPORT_AHBLITE_MPU_TABLE_PCNT_REG (0x384)
Register 5.175. DPORT_AHBLITE_MPU_TABLE_SLC_REG (0x388)
Register 5.176. DPORT_AHBLITE_MPU_TABLE_LEDC_REG (0x38C)
Register 5.177. DPORT_AHBLITE_MPU_TABLE_EFUSE_REG (0x390)
Register 5.178. DPORT_AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG (0x394)
Register 5.179. DPORT_AHBLITE_MPU_TABLE_PWMO0_REG (0x39C)
Register 5.180. DPORT_AHBLITE_MPU_TABLE_TIMERGROUP_REG (0x3A0)
Register 5.181. DPORT_AHBLITE_MPU_TABLE_TIMERGROUP1_REG (0x3A4)
Register 5.182. DPORT_AHBLITE_MPU_TABLE_SPI2_REG (0x3A8)
Register 5.183. DPORT_AHBLITE_MPU_TABLE_SPI3_REG (0x3AC)
Register 5.184. DPORT_AHBLITE_MPU_TABLE_SYSCON_REG (0x3B0)
Register 5.185. DPORT_AHBLITE_MPU_TABLE_I2C_EXT1_REG (0x3B4)
Register 5.186. DPORT_AHBLITE_MPU_TABLE_SDIO_HOST_REG (0x3B8)
Register 5.187. DPORT_AHBLITE_MPU_TABLE_EMAC_REG (0x3BC)
Register 5.188. DPORT_AHBLITE_MPU_TABLE_PWM1_REG (0x3C4)
Register 5.189. DPORT_AHBLITE_MPU_TABLE_I2S1_REG (0x3C8)
Register 5.190. DPORT_AHBLITE_MPU_TABLE_UART2_REG (0x3CC)

Espressif Systems 117 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.191. DPORT_AHBLITE_MPU_TABLE_PWR_REG (0x3E4)

DPORT_AHBLITE_*_ACCESS_GRANT_CONFIG MPU for peripherals. (R/W)

Register 5.192. DPORT_IMMU_TABLEn_REG (: 0-15) (0x504+4)

@\35\
?\
7/
&
Qub\ &>
o &
2 L
NS Q
\31 7|6 o\
\ooooooooooooooooooooooooo| 0000000 \Reset

DPORT_IMMU_TABLEn MMU for internal SRAM. When n is O ~ 9, the reset value is 0. When nis 10
~ 15, the reset value is 10, 11, 12, 13, 14, 15, respectively. (R/W)

Register 5.193. DPORT_DMMU_TABLE/_REG (: 0-15) (0x544+4*")

Q
oF
?\
7/
W
QJ& %
o RS
@ I
‘31 716 0‘
\ooooooooooooooooooooooooo 0000000 \Reset

DPORT_DMMU_TABLEn MMU for internal SRAM. When n is O ~ 15, the reset value is O ~ 15, re-
spectively. (R/W)

Espressif Systems 118 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

5 DPort Registers

Register 5.194. DPORT_SPI_DMA_CHAN_SEL_REG (0x5A8)

Q\ s Q\ s Q\ s
Q)b\ &? K7 K7
Q,(\\ OQ\ OQ\ OQ\
d Q Q Q
N Q Q Q

DPORT_SPI_SPI3_DMA_CHAN_SEL Selects DMA channel for SPI3. (R/W)
DPORT_SPI_SPI2_DMA_CHAN_SEL Selects DMA channel for SPI12. (R/W)

DPORT_SPI_SPI1_DMA_CHAN_SEL Selects DMA channel for SPI1. (R/W)

Espressif Systems 119 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

6 DMA Controller (DMA)

6 DMA Controller (DMA)

6.1 Overview

Direct Memory Access (DMA) is used for high-speed data transfer between peripherals and memory, as well as

from memory to memory. Data can be quickly moved with DMA without any CPU intervention, thus allowing for

more efficient use of the cores when processing data.

In the ESP32, 13 peripherals are capable of using DMA for data transfer, namely, UARTO, UART1, UART2, SPI1,
SPI2, SPI3, 1230, 1251, SDIO slave, SD/MMC host, EMAC, BT, and Wi-Fi.

6.2 Features

The DMA controllers in the ESP32 feature:

¢ AHB bus architecture

Support for full-duplex and half-duplex data transfers

* Programmable data transfer length in bytes

328 KB DMA address space

Support for 4-beat burst transfer

All high-speed communication modules powered by DMA

6.3 Functional Description
All modules that require high-speed data transfer in bulk contain a DMA controller. DMA addressing uses the same
data bus as the CPU to read/write to the internal RAM.

Each DMA controller features different functions. However, the architecture of the DMA engine (DMA_ENGINE) is
the same in all DMA controllers.

6.3.1 DMA Engine Architecture

DMA_ENGINE

RAM

out_link0

out_linkn

SNg gHY

in_link0

\J

A
y

in_linkn

Figure 6-1. DMA Engine Architecture

The DMA Engine accesses SRAM over the AHB BUS. In Figure 6-1, the RAM represents the internal SRAM banks
available on ESP32. Further details on the SRAM addressing range can be found in Chapter System and Memory.

Espressif Systems

120
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

6 DMA Controller (DMA)

Software can use a DMA Engine by assigning a linked list to define the DMA operational parameters.

The DMA Engine transmits the data from the RAM to a peripheral, according to the contents of the out_link de-
scriptor. Also, the DMA Engine stores the data received from a peripheral into a specified RAM location, according
to the contents of the in_link descriptor.

6.3.2 Linked List

31 30 29 23 11 0
DWO ‘owner‘ eof ‘ reserved| length size ‘
DWH1 ‘ buffer address pointer ‘
DwW2 ‘ next descriptor address ‘

Figure 6-2. Linked List Structure

The DMA descriptor’s linked lists (out_link and in_link) have the same structure. As shown in Figure 6-2, a linked-list
descriptor consists of three words. The meaning of each field is as follows:

e owner (DWO) [31]: The allowed operator of the buffer corresponding to the current linked list.
1’b0: the allowed operator is the CPU;
1'b1: the allowed operator is the DMA controller.

e cof (DWO) [30]: End-Of-File character.
1’b0: the linked-list item does not mark the end of the linked list;
1'b1: the linked-list item is at the end of the linked list.

e reserved (DWO) [29:24]: Reserved bits.
Software should not write 1’s in this space.

¢ length (DWO) [23:12]: The number of valid bytes in the buffer corresponding to the current linked list. The
field value indicates the number of bytes to be transferred to/from the buffer denoted by word DW1.

e size (DWO) [11:0]: The size of the buffer corresponding to the current linked list.
NOTE: The size must be word-aligned.

e buffer address pointer (DW1): Buffer address pointer. This is the address of the data buffer.
NOTE: The buffer address must be word-aligned.

e next descriptor address (DW2): The address pointer of the next linked-list item. The value is O, if the current
linked-list item is the last on the list (eof=1).

When receiving data, if the data transfer length is smaller than the specified buffer size, DMA will not use the
remaining space. This enables the DMA engine to be used for transferring an arbitrary number of data bytes.

6.4 UART DMA (UDMA)
The ESP32 has three UART interfaces that share two UDMA (UART DMA) controllers. The UHCI_UARTx_CE (x is
0, 1, or 2) is used for selecting the UART controller to use the UDMA.

Espressif Systems 121 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

6 DMA Controller (DMA)

UDMA
UHCI UART
Transmitter txd_out
DMA_ENGINE » Encoder > >
Receiver .
— Decoder |4 - rxd_in

Figure 6-3. Data Transfer in UDMA Mode

Figure 6-3 shows the data transfer in UDMA mode. Before the DMA Engine receives data, software must initialize
the receive-linked-list. UHCI_INLINK_ADDR is used to point to the first in_link descriptor. The register must be
programmed with the lower 20 bits of the address of the initial linked-list item. After UHCI_INLINK_START is set,
the Universal Host Controller Interface (UHCI) will transmit the data received by UART to the Decoder. After being
parsed, the data will be stored in the RAM as specified by the receive-linked-list descriptor.

Before DMA transmits data, software must initialize the transmit-linked-list and the data to be transferred. UHCI_
OUTLINK_ADDR is used to point to the first out_link descriptor. The register must be programmed with the lower
20 bits of the address of the initial transmit-linked-list item. After UHCI_OUTLINK_START is set, the DMA Engine
will read data from the RAM location specified by the linked-list descriptor and then transfer the data through the
Encoder. The DMA Engine will then shift the data out serially through the UART transmitter.

The UART DMA follows a format of (separator + data + separator). The Encoder is used for adding separa-
tors before and after data, as well as using special-character sequences to replace data that are the same
as separators. The Decoder is used for removing separators before and after data, as well as replacing the
special-character sequences with separators. There can be multiple consecutive separators marking the be-
ginning or end of data. These separators can be configured through UHCI_SEPER_CH, with the default val-
ues being 0xCO. Data that are the same as separators can be replaced with UHCI_ESC_SEQO_CHARO (0xDB
by default) and UHCI_ESC_SEQO_CHAR1 (0xDD by default). After the transmission process is complete, a
UHCI_OUT_TOTAL_EOF_INT interrupt will be generated. After the reception procedure is complete, a UHCI_IN_
SUC_EOF_INT interrupt will be generated.

Note:
Please note that the buffer address pointer field in in_link descriptors should be word-aligned, and the size field in the last
in_link descriptor should be at least 4 bytes larger than the length of received data.

Espressif Systems 122 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

6 DMA Controller (DMA)

6.5 SPI DMA Interface

DMA SPI0_CHAN_SEL

chan1

<+«— SPI1

chan2 [ef---e---1--%2

SPI1_CHAN_SEL

<«— SPI2

SPI3_CHAN_SEL

<«— SPI3

Figure 6-4. SPI DMA

ESP32 SPI modules can use DMA as well as the CPU for data exchange with peripherals. As can be seen from
Figure 6-4, two DMA channels are shared by SPI1, SPI2 and SPI3 controllers. Each DMA channel can be used
by any one SPI controller at any given time.

The ESP32 SPI DMA Engine also uses a linked list to receive/transmit data. Burst transmission is supported. The
data size for a single transfer must be four bytes aligned. Consecutive data transfer is also supported.

SPI1_DMA_CHAN_SEL[1:0], SPI2_DMA_CHAN_SEL[1:0] and SPI3_DMA_CHAN_SEL[1:0] in DPORT_SPI_DMA _
CHAN_SEL_REG must be configured to enable the SPI DMA interface for a specific SPI controller. Each SPI
controller corresponds to one domain which has two bits with values 0, 1 and 2. Value 3 is reserved and must not
be configured for operation.

Considering SPI1 as an example,

if SPI SPI1_DMA_CHAN_SEL[1:0] = 0, then SPI1 does not use any DMA channel;
if SPI1_DMA_CHAN_SEL[1:0] = 1, then SPI1 enables DMA channell;

if SPI1_DMA_CHAN_SEL[1:0] = 2, then SPI1 enables DMA channel2.

The SPI_OUTLINK_START bit in SPI_DMA_OUT_LINK_REG and the SPI_INLINK_START bitin SPI_DMA_IN_LINK_REG
are used for enabling the DMA Engine. The two bits are self-cleared by hardware. When SPI_OUTLINK_START

is set to 1, the DMA Engine starts processing the outbound linked list descriptor and prepares to transmit data.
When SPI_INLINK_START is set to 1, then the DMA Engine starts processing the inbound linked-list descriptor

and gets prepared to receive data.

Software should configure the SPI DMA as follows:
1. Reset the DMA state machine and FIFO parameters;
2. Configure the DMA-related registers for operation;
3. Configure the SPI-controller-related registers accordingly;

4. Set SPI_USR to enable DMA operation.

Espressif Systems 123 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

6 DMA Controller (DMA)

6.6 12S DMA Interface

The ESP32 integrates two 12S modules, 12S0 and 1251, each of which is powered by a DMA channel. The
REG_I2S_DSCR_EN bit in 12S_FIFO_CONF_REG is used for enabling the DMA operation. ESP32 12S DMA
uses the standard linked-list descriptor to configure DMA operations for data transfer. Burst transfer is sup-
ported. However, unlike the SPI DMA channels, the data size for a single transfer is one word, or four bytes.
REG_I12S5_RX_EOF_NUM[31:0] bit in I2S5_RXEOF_NUM_REG is used for configuring the data size of a single trans-
fer operation, in multiples of one word.

[2S_OUTLINK_START bitin 12S_OUT_LINK_REG and I12S_INLINK_START bit in I2S_IN_LINK_REG are used for en-
abling the DMA Engine and are self-cleared by hardware. When 12S_OUTLINK_START is set to 1, the DMA Engine
starts processing the outbound linked-list descriptor and gets prepared to send data. When 12S_INLINK_START
is set to 1, the DMA Engine starts processing the inbound linked-list descriptor and gets prepared to receive
data.

Software should configure the 12S DMA as follows:
1. Configure 12S-controller-related registers;
2. Reset the DMA state machine and FIFO parameters;
3. Configure DMA-related registers for operation;

4. In 12S master mode, set 12S_TX_START bit or I2S_RX_START bit to initiate an 12S operation;
In 12S slave mode, set 12S_TX_START bit or 1I2S_RX_START bit and wait for data transfer to be initiated by
the host device.

For more information on 12S DMA interrupts, please see Section DMA Interrupts, in Chapter 12S.

Espressif Systems 124 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

7 SPI Controller (SPI)

7.1 Overview

i >[GPIO[+**»| |PAD

CaChe < i SPIO <| > 40__.2 SPI d MatriX :” : ﬁ;_. i

: o] —

et B e

S I/O 7%_. ;

DMA - SJMUX| |

chanQ | j«—> g | gp|o |«—HSPI %4 #_.

chan1 | |« P54 VSPp| Lol

\~ » SPI3 >

Figure 7-1. SPI Architecture

As Figure 7-1 shows, ESP32 integrates four SPI controllers which can be used to communicate with external
devices that use the SPI protocol. Controller SPIO is used as a buffer for accessing external memory. Controller
SPI1 can be used as a master. Controllers SPI2 and SPI3 can be configured as either a master or a slave.
When used as a master, each SPI controller can drive multiple CS signals (CSO~CS2) to activate multiple slaves.
Controllers SPI1~SPI3 share two DMA channels.

The SPI signal buses consist of D, Q, CS0-CS2, CLK, WP, and HD signals, as Table 7-1 shows. Controllers
SPIO and SPI1 share one signal bus through an arbiter; the signals of the shared bus start with “SPI”. Controllers
SPI2 and SPI3 use signal buses starting with “HSPI” and “VSPI” respectively. The I/O lines included in the above-
mentioned signal buses can be mapped to pins via either the I0_MUX module or the GPIO matrix. (Please refer
to Chapter I0_MUX for details.)

The SPI controller supports four-line full-duplex/half-duplex communication (MOSI, MISO, CS, and CLK lines) and
three-line half-duplex-only communication (DATA, CS, and CLK lines) in GP-SPI mode. In QSPI mode, an SPI
controller accesses the flash or SRAM by using signal buses D, Q, CS0~CS2, CLK, WP, and HD as a four-bit
parallel SPI bus. The mapping between SPI bus signals and pin function signals under different communication
modes is shown in Table 7-1.

Table 7-1. Mapping Between SPI Bus Signals and Pin Function Signals

Four-line GP-SPI Three-line GP-SPI QSPI Pin function signals
Full-duplex/half- Half-duplex signal | Signal bus SPI signal | HSPI signal | VSPI signal
duplex signal bus bus bus bus bus

MOSI DATA D SPID HSPID VSPID

MISO - Q SPIQ HSPIQ VSPIQ

CS CS CS SPICSO HSPICSO VSPICSO
CLK CLK CLK SPICLK HSPICLK VSPICLK

- - WP SPIWP HSPIWP VSPIWP

- - HD SPIHD HSPIHD VSPIHD

Espressif Systems

125

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

7.2 SPI Features
General Purpose SPI (GP-SPI)

® Programmable data transfer length, in multiples of 1 byte
e Four-line full-duplex/half-duplex communication and three-line half-duplex communication support
* Master mode and slave mode
e Programmable CPOL and CPHA
® Programmable clock
Parallel QSPI
e Communication format support for specific slave devices such as flash
® Programmable communication format
e Six variations of flash-read operations available
e Automatic shift between flash and SRAM access
¢ Automatic wait states for flash access
SPI DMA Support
e Support for sending and receiving data using linked lists
SPI Interrupt Hardware
e SPIinterrupts

e SPI DMA interrupts

7.3 GP-SPI

The SPI master mode supports four-line full-duplex/half-duplex communication and three-line half-duplex commu-
nication. Figure 7-2 outlines the connections needed for four-line full-duplex/half-duplex communications.

Master Slave

MOSI| —» MOSI

MISO &— MISO

ESP32 CLKI——» CLK

SPI
CS—» CS

Figure 7-2. SPI Master and Slave Full-duplex/Half-duplex Communication

The SPI1~SPI3 controllers can communicate with other slaves as a standard SPI master. SPI2 and SPI3 can be
configured as either a master or a slave. Every SPI master can be connected to three slaves at most by default.
When not using DMA, the maximum length of data received/sent in one burst is 64 bytes. The data length is in
multiples of one byte.

Espressif Systems 126 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Table 7-2. Command Definitions Supported by GP-SPI Slave in Half-duplex Mode

Command Description

Ox1 Received by slave; writes data sent by the master into the slave status register via MOSI.

Ox2 Received by slave; writes data sent by the master into the slave data buffer via MOSI.

0x3 Sent by slave; sends data in the slave buffer to master via MISO.

Ox4 Sent by slave; sends data in the slave status register to master via MISO.

X6 Writes master data on MOSI into data buffer and then sends the date in the slave data buffer
to MISO.

7.3.1 GP-SPI Four-line Full-duplex Communication

When configured to four-line full-duplex mode, the ESP32 SPI can act as either a master or a slave. The length of
received and sent data needs to be set by configuring the SPI_MISO_DLEN_REG, SPI_MOSI_DLEN_REG registers
for master mode as well as SPI_SLV_RDBUF_DLEN_REG, SPI_SLV_WRBUF_DLEN_REG registers for slave mode.
The SPI_DOUTDIN bit and SPI_USR_MOQOSI bit in register SPI_USER_REG should be configured to enable this
communication mode. The SPI_USR bit in register SPI_CMD_REG needs to be configured to initialize a data
transfer.

7.3.2 GP-SPI Four-line Half-duplex Communication

When configured to four-line half-duplex mode, the ESP32 SPI can act as either a master or a slave. In this
mode, the SPI communication supports flexible communication format as: command + address + dummy phase
+ received and/or sent data. The format is specified as follows:

1. command: length of O~16 bits; Master Out Slave In (MOSI).
2. address: length of 0~32/64 bits; Master Out Slave In (MOSI).
3. dummy phase: length of 0~256 SPI clocks.

4. received and/or sent data: length of 0~512 bits (64 bytes); Master Out Slave In (MOSI) or Master In Slave
Out (MISO).

The address length is up to 32 bits in GP-SPI master mode and 64 bits in QSPI master mode. The command
phase, address phase, dummy phase and received/sent data phase are controlled by bits SPI_USR_COMMAND,
SPI_USR_ADDR, SPI_USR_DUMMY, and SPI_USR_MISO/SPI_USR_MOSI respectively in register SPI_USER_REG.
A certain phase is enabled only when its corresponding control bit is set to 1. Details can be found in register de-
scription. When SPI works as a master, the register can be configured by software as required to determine
whether or not to enable a certain phase.

When SPI works as a slave, the communication format must contain command, address, received and/or sent
data, among which the command has several options listed in Table 7-2. During data transmission or reception,
the CS signal should keep logic level low. If the CS signal is pulled up during transmission, the internal state of the
slave will be reset.

The master can write the slave status register SPI_SLV_WR_STATUS_REG, and decide whether to read data from
register SPI_SLV_WR_STATUS_REG or register SPI_RD_STATUS_REG via the SPI_SLV_STATUS_READBACK bit
in register SPI_SLAVE1_REG. The SPI master can maintain communication with the slave by reading and writing
slave status register, thus realizing complex communication with ease.

The length of received and sent data is controlled by SPI_MISO_DLEN_REG and SPI_MOSI_DLEN_REG in master
mode, as well as SPI_SLV_RDBUF_DLEN_REG and SPI_SLV_WRBUF_DLEN_REG in slave mode. A reception or

Espressif Systems 127 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

transmission of data is controlled by bit SPI_USR_MOSI or SPI_USR_MISO in SPI_USER_REG. The SPI_USR bit
in register SPI_CMD_REG needs to be configured to initialize a data transfer.

7.3.3 GP-SPI Three-line Half-duplex Communication

The three-line half-duplex communication differs from four-line half-duplex communication in that the reception
and transmission shares one signal bus and that the communication format must contain command, address,
received and/or sent data. Software can enable three-line half-duplex communication by configuring SPI_SIO bit
in SPI_USER_REG register.

Note:

¢ |n half-duplex communication, the order of command, address, received and/or sent data in the communication
format should be followed strictly.

¢ In half-duplex communication, communication formats "command + address + received data + sent data” and
"received data + sent data” are not applicable to DMA.

e When ESP32 SPI acts as a slave, the master CS should be active at least one SPI clock period before a read/write
process is initiated, and should be inactive at least one SPI clock period after the read/write process is completed.

7.3.4 GP-SPI Data Buffer

31 0
SPI_WO_REG| | |
) low
SPI_W7_REG
SPI_W8_REG
high
SPI_W15_REG| | |

Figure 7-3. SPI Data Buffer

ESP32 SPI has 16 x 32 bits of data buffer to buffer data-send and data-receive operations. As is shown in Figure
7-3, received data is written from the low byte of SPI_WO_REG by default and the writing ends with SPI_W15_REG.
If the data length is over 64 bytes, the extra part will be written from SPI_WO_REG.

Data buffer blocks SPI_WO_REG ~ SPI_W7_REG and SPI_W8_REG ~ SPI_W15_REG data correspond to the
lower part and the higher part respectively. They can be used separately, and are controlled by the SPI_USR_MOSI
_HIGHPART bit and the SPI_USR_MISO_HIGHPART bit in register SPI_USER_REG. For example, if SPI is con-
figured as a master, when SPI_USR_MOSI_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are used as buffer
for sending data; when SPI_USR_MISO_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are used as buffer for
receiving data. If SPI acts as a slave, when SPI_USR_MOSI_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG
are used as buffer for receiving data; when SPI_USR_MISO_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are
used as buffer for sending data.

Espressif Systems 128 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Table 7-3. Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Master

Registers mode0 mode mode2 mode3
SPI_CK_IDLE_EDGE 0 0 1 1
SPI_CK_OUT_EDGE 0 1 1 0
SPI_MISO_DELAY_MODE 2(0) 1(0) 1(0) 2(0)
SPI_MISO_DELAY_NUM 0 0 0 0
SPI_MOSI_DELAY_MODE 0 0 0 0
SPI_MOSI_DELAY_NUM 0 0 0 0

7.4 GP-SPI Clock Control

The maximum output clock frequency of ESP32 GP-SPI master is fapp/2, and the maximum input clock frequency
of the ESP32 GP-SPI slave is fapn/8. The master can derive other clock frequencies via frequency division.

f — fapb
P (SPI_CLKCNT_N+1)(SPI_CLKDIV_PRE+1)

SPI_CLKCNT_N and SPI_CLKDIV_PRE are two bits of register SPI_CLOCK_REG (Please refer to 7.7 Regis-
ter Description for details). SPI_CLKCNT_H = LW—H, SPI_CLKCNT_N=SPI_CLKCNT_L. When the
SPI_CLK_EQU_SYSCLK bit in register SPI_CLOCK_REG is set to 1, and the other bits are set to 0, SPI output
clock frequency is fapn. For other clock frequencies, SPI_CLK_EQU_SYSCLK needs to be 0. In slave mode,
SPI_CLKCNT_N, SPI_CLKCNT_L, SPI_CLKCNT_H and SPI_CLKDIV_PRE should all be 0.

7.4.1 GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA)

The clock polarity and clock phase of ESP32 SPI are controlled by SPI_CK_IDLE_EDGE bit in register SPI_PIN_REG,
SPI_CK_OUT_EDGE bit and SPI_CK_|_EDGE bit in register SPI_USER_REG, as well as SPI_MISO_DELAY_MODE][1:0]
bit, SPI_MISO_DELAY_NUM][2:0] bit, SPI_MOSI_DELAY_MODE[1:0] bit, SPI_MOSI_DELAY_MUM][2:0] bit in reg-
ister SPI_CTRL2_REG. Table 7-3 and Table 7-4 show the clock polarity and phase as well as the corresponding
register values for ESP32 SPI master and slave, respectively. Note that for modeO and mode?2 in Table 7-4, the
registers are configured differently in non-DMA mode and DMA mode, and that the SPI slave data is output in
advance in DMA mode.

Table 7-4. Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Slave

Reqisters mode0 mode1 mode2 mode3
Non-DMA | DMA Non-DMA | DMA

SPI_CK_IDLE_EDGE
SPI_CK_I_EDGE
SPI_MISO_DELAY_MODE
SPI_MISO_DELAY_NUM
SPI_MOSI_DELAY_MODE
SPI_MOSI_DELAY_NUM

N[f=]O|O|—=|O

viv|io|lo|o
wlo|nv|o|l=|o
olo|lo|n|=|=
wlo|nv|olol=
olo|o|=|olo

1. modeO means CPOL=0, CPHA=0. When SPI is idle, the clock output is logic low; data changes on the
falling edge of the SPI clock and is sampled on the rising edge;

2. mode1 means CPOL=0, CPHA=1. When SPI is idle, the clock output is logic low; data changes on the rising
edge of the SPI clock and is sampled on the falling edge;

Espressif Systems 129 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

3. mode2 means when CPOL=1, CPHA=0. When SPl is idle, the clock output is logic high; data changes on
the rising edge of the SPI clock and is sampled on the falling edge;

4. mode3 means when CPOL=1, CPHA=1. When SPl is idle, the clock output is logic high; data changes on
the falling edge of the SPI clock and is sampled on the rising edge.

7.4.2 GP-SPI Timing

The data signals of ESP32 GP-SPI can be mapped to physical pins either via IO_MUX or via IO_MUX and GPIO
matrix. Input signals will be delayed by two clkap, clock cycles when they pass through the matrix. Output signals
will not be delayed.

When GP-SPI is used as master and the data signals are not received by the SPI controller via GPIO matrix, if
GP-SPI output clock frequency is clkapn /2, register SPI_MISO_DELAY_MODE should be set to O when configuring
the clock polarity. If GP-SPI output clock frequency is not higher than clkapn /4, register SPI_MISO_DELAY_MODE
can be set to the corresponding value in Table 7-3 when configuring the clock polarity.

When GP-SPI is used in master mode and the data signals enter the SPI controller via the GPIO matrix:

1. If GP-SPI output clock frequency is clkapn/2, register SPI_MISO_DELAY_MODE should be set to O and the
dummy phase should be enabled (SPI_USR_DUMMY = 1) for one clkgp; clock cycle (SPI_USR_DUMMY_CYC
LELEN = Q) when configuring the clock polarity;

2. If GP-SPI output clock frequency is clkapn/4, register SPI_MISO_DELAY_MODE should be set to 0 when
configuring the clock polarity;

3. If GP-SPI output clock frequency is not higher than clkapp /8, register SPI_MISO_DELAY_MODE can be set
to the corresponding value in Table 7-3 when configuring the clock polarity.

When GP-SPI is used in slave mode, the clock signal and the data signals should be routed to the SPI controller
via the same path, i.e., neither the clock signal nor the data signals passes through GPIO matrix, or both of them
pass through GPIO matrix. This is important in ensuring that the signals are not delayed by different time periods
before they reach the SPI hardware.

Assume that s, tore @and ty in Figure 7-4 denote SPI clock period, how far ahead data output is, and data output
delay time, respectively. Assume the SPI slave’s main clock period is tao,. For non-DMA mode0O, SPI slave data
output is delayed by t:

® ¢, < 3.5 * tapp, if CLK does not pass through GPIO matrix;
® t, < 5.5 % tapp, if CLK passes through GPIO matrix.

In DMA mode1 and mode3, SPI slave data output is delayed by the same period of time as in non-DMA mode.
However, for modeO and mode2, SPI slave data is output earlier by tpre:

® toe < (tspi/2 — 5.5 * tapp), if CLK does not pass through GPIO matrix;

® tore < (tspi/2 — 7.5 * tapp), if CLK passes through GPIO matrix.

Espressif Systems 130 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

t
Spi
CLK "N/ W/
t vt
\% pre
(V5] R S— % S R C—

Figure 7-4. GP-SPI

To conclude, if signals do not pass through GPIO matrix, the SPI slave clock frequency is up to fapn/8; if signals
pass through GPIO matrix, the SPI slave clock frequency is up to fapn/12. Note that (tspi/2—tre) represents data
output hold time for SPI slave in modeO and mode2.

7.5 Parallel QSPI

ESP32 SPI controllers support SPI bus memory devices (such as flash and SRAM). The hardware connection
between the SPI pins and the memories is shown by Figure 7-5.

Master Slave
D |« Sl
Q SO flash
WP |« WP
HD |« HOLD
CLK scK
CSso CE
LS|
ESP32 e)
QSPI wp SRAM
HOLD
scK
cs1 CE

Figure 7-5. Parallel QSPI

SPI1, SPI2 and SPI3 controllers can also be configured as QSPI master to connect to external memory. The
maximum output clock frequency of the SPI memory interface is fapn, With the same clock configuration as that of
the GP-SPI master.

7.5.1 Communication Format of Parallel QSPI

To support communication with special slave devices, ESP32 QSPI implements a specifically designed commu-
nication protocol. The communication format of ESP32 QSPI master is the same as that of GP-SPI four-line
half-duplex communication, except that in address phase and data phase, software can configure registers to en-
able two-line or four-line transmission. Figure 7-6 shows a QSPI communication mode with four-line transmission
in address phase and data phase.

Espressif Systems 131 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Uiy upyguuuyypygupuyyis

Ko X1 X2 X3 X4 X5 X6 X7 X4 X0 X4 X0 X4 X0 4 X0 X4 X0) >

o 5 X1 X5 X1 X5X1 5 X1 X5 X2y .

e 6 X2 X6 X2 X6 X2 (6 X2 X6 X2

- 7 X3X7 X3 X7 X3 (7 X3XT X3
< Command phase g Address phase]Su:rnrny ph;se Data phase g

Figure 7-6. Communication Format of Parallel QSPI

ESP32 QSPI supports flash-read operation in one-line, two-line, and four-line modes. When working as a QSPI
master, the command phase, address phase, dummy phase and data phase can be configured as needed, as
flexible as in GP-SPI mode.

Note that GPI-SPI full-duplex mode does not support dummy phase.

7.6 GP-SPI Interrupt Hardware
ESP32 SPI generates two types of interrupts. One is the SPI interrupt and the other is the SPI DMA interrupt.

ESP32 SPI reckons the completion of send- and/or receive-operations as the completion of one operation from
the controller and generates one interrupt. When ESP32 SPI is configured to slave mode, the slave will generate
read/write status registers and read/write buffer data interrupts according to different operations.

7.6.1 SPI Interrupts

The SPI_*_INTEN bits in the SPI_SLAVE_REG register can be set to enable SPI interrupts. When an SPI interrupt
happens, the interrupt flag in the corresponding SPI_*_DONE register will get set. This flag is writable, and an
interrupt can be cleared by setting the bit to zero.

o SPI_TRANS_DONE_INT: Triggered when an SPI operation is done.

SPI_SLV_WR_STA_INT: Triggered when an SPI slave status write is done.

SPI_SLV_RD_STA_INT: Triggered when an SPI slave status read is done.

SPI_SLV_WR_BUF_INT: Triggered when an SPI slave buffer write is done.

SPI_SLV_RD_BUD_INT: Triggered when an SPI slave buffer read is done.

7.6.2 DMA Interrupts
e SPI_OUT_TOTAL_EOF_INT: Triggered when all linked lists are sent.

SPI_OUT_EOF_INT: Triggered when one linked list is sent.

SPI_OUT_DONE_INT: Triggered when the last linked list item has zero length.

SPI_IN_SUC_EOF_INT: Triggered when all linked lists are received.

SPI_IN_ERR_EOF_INT: Triggered when there is an error receiving linked lists.

SPI_IN_DONE_INT: Triggered when the last received linked list had a length of O.

SPI_INLINK_DSCR_ERROR_INT: Triggered when the received linked list is invalid.

SPI_OUTLINK_DSCR_ERROR_INT: Triggered when the linked list to be sent is invalid.

Espressif Systems 132 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

¢ SPI_INLINK_DSCR_EMPTY_INT: Triggered when no valid linked list is available.

7.7 Register Summary

Name ‘ Description SPIO SPI1 SPI2 SPI3 Acc

Control and configuration registers
Bit order and

SPI_CTRL_REG QIO/DIO/QOUT/DOUT] 3FF43008 | 3FF42008 | 3FF64008 | 3FF65008 | R/W
mode settings

SPI_CTRL2_REG Timing configuration | 3FF43014 | 3FF42014 | 3FF64014 | 3FFB5014 | R/W

SPI_CLOCK_REG Clock configuration 3FF43018| 3FF42018 | 3FF64018 | 3FF65018 | R/W
Polarity and CS con-

SPI_PIN_REG , , 3FF43034 | 3FF42034 | 3FF64034 | 3FF65034 | R/W
figuration

Slave mode configuration registers
Slave mode config-

SPI_SLAVE_REG uration and interrupt | 3FF43038 | 3FF42038 | 3FF64038 | 3FF65038 | R/W
status

SPI_SLAVE1_REG Slave data bit lengths | 3FF4303C| 3FF4203C| 3FF6403C| 3FF6503C| R/W
Dummy cycle length

SPI_SLAVE2_REG , _ 3FF43040 | 3FF42040| 3FF64040 | 3FF65040 | R/W
configuration
Slave status/Part of

SPI_SLV_WR_STATUS_REG 3FF43030| 3FF42030| 3FF64030 | 3FF65030 | R/W
lower master address
Write-buffer opera-

SPI_SLV_WRBUF_DLEN_REG o lenath 3FF43048 | 3FF42048 | 3FF64048 | 3FF65048 | R/W
ion leng
Read-buffer opera-

SPI_SLV_RDBUF_DLEN_REG tion lenath 3FF4304C| 3FF4204C| 3FF6404C| 3FF6504C| R/W
ion leng
Read data operation

SPI_SLV_RD_BIT_REG enath 3FF43064 | 3FF42064 | 3FF64064 | 3FF65064 | R/W
eng

User-defined command mode registers
Start user-defined

SPI_CMD_REG 3FF43000| 3FF42000 | 3FF64000 | 3FF65000 | R/W
command

SPI_ADDR_REG Address data 3FF43004 | 3FF42004 | 3FF64004 | 3FF65004 | R/W
User defined com-

SPI_USER_REG , , 3FF4301C| 3FF4201C| 3FF6401C| 3FFB501C| R/W
mand configuration
Address and dummy

SPI_USER1_REG , _ 3FF43020 | 3FF42020 | 3FF64020 | 3FF65020 | R/W
cycle configuration
Command length

SPI_USER2_REG and value configura- | 3FF43024 | 3FF42024 | 3FF64024 | 3FF65024 | R/W
tion

SPI_MOSI_DLEN_REG MOSI length 3FF43028 | 3FF42028 | 3FF64028 | 3FF65028 | R/W

SPI_WO_REG SPI data register O 3FF43080 | 3FF42080 | 3FF64080 | 3FF65080 | R/W

SPI_W1_REG SPI data register 1 3FF43084 | 3FF42084 | 3FF64084 | 3FF65084 | R/W

SPI_W2_REG SPI data register 2 3FF43088 | 3FF42088 | 3FF64088 | 3FF65088 | R/W

SPI_W3_REG SPI data register 3 3FF4308C| 3FF4208C| 3FF6408C| 3FF6508C| R/W

SPI_W4_REG SPI data register 4 3FF43090 | 3FF42090 | 3FF64090 | 3FF65090 | R/W

Espressif Systems

133

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Name Description SPIO SPI1 SPI2 SPI3 Acc
SPI_W5_REG SPI data register 5 3FF43094 | 3FF42094 | 3FF64094 | 3FF65094 | R/W
SPI_W6_REG SPI data register 6 3FF43098 | 3FF42098 | 3FF64098 | 3FFE5098 | R/W
SPI_W7_REG SPI data register 7 3FF4309C| 3FF4209C| 3FF6409C| 3FFB509C| R/W
SPI_W8_REG SPI data register 8 3FF430A0| 3FF420A0| 3FFB40A0| 3FFE50A0| R/W
SPI_W9_REG SPI data register 9 3FF430A4| 3FF420A4| 3FF640A4 | 3FFB50A4 | R/W
SPI_W10_REG SPI data register 10 | 3FF430A8| 3FF420A8| 3FF640A8| 3FF650A8| R/W
SPI_W11_REG SPI data register 11 3FF430AC| 3FF420AC| 3FFB40AC| 3FFB50AC| R/W
SPI_W12_REG SPI data register 12 3FF430B0| 3FF420B0| 3FF640B0| 3FF650B0| R/W
SPI_W13_REG SPI data register 13 | 3FF430B4| 3FF420B4| 3FF640B4| 3FF650B4| R/W
SPI_W14_REG SPI data register 14 | 3FF430B8| 3FF420B8| 3FF640B8| 3FF650B8| R/W
SPI_W15_REG SPI data register 15 3FF430BC| 3FF420BC| 3FF640BC| 3FF650BC| R/W
DMA configuration registers
DMA configuration
SPI_DMA_CONF_REG st 3FF43100| 3FF42100| 3FF64100 | 3FF65100 | R/W
register
DMA outlink address
SPI_DMA_OUT_LINK_REG , , 3FF43104 | 3FF42104 | 3FF64104 | 3FF65104 | R/W
and configuration
DMA inlink address
SPI_DMA_IN_LINK_REG , , 3FF43108 | 3FF42108 | 3FF64108 | 3FF65108 | R/W
and configuration
SPI_DMA_STATUS_REG DMA status 3FF4310C| 3FF4210C| 3FF6410C| 3FFE510C| RO
Descriptor address
SPI_IN_ERR_EOF_DES_ADDR_REG | where an error | 3FF43120| 3FF42120| 3FF64120 | 3FF65120 | RO
occurs
Descriptor address
SPI_IN_SUC_EOF_DES_ADDR_REG 3FF43124 | 3FF42124 | 3FF64124 | 3FF65124 | RO
where EOF occurs
Current descriptor
SPI_INLINK_DSCR_REG it 3FF43128 | 3FF42128 | 3FF64128 | 3FF65128 | RO
pointer
Next descriptor data
SPI_INLINK_DSCR_BFO_REG it 3FF4312C| 3FF4212C| 3FF6412C| 3FF6512C| RO
pointer
Current descriptor
SPI_INLINK_DSCR_BF1_REG , 3FF43130| 3FF42130| 3FF64130 | 3FFBE5130 | RO
data pointer
Relative buffer ad-
SPI_OUT_EOF_BFR_DES_ADDR_REG| dress where EOF | 3FF43134| 3FF42134 | 3FF64134 | 3FF65134 | RO
occurs
Descriptor address
SPI_OUT_EOF_DES_ADDR_REG 3FF43138| 3FF42138 | 3FF64138 | 3FF65138 | RO
where EOF occurs
Current descriptor
SPI_OUTLINK_DSCR_REG it 3FF4313C| 3FF4213C| 3FF6413C| 3FF6513C| RO
pointer
Next descriptor data
SPI_OUTLINK_DSCR_BFO_REG it 3FF43140| 3FF42140| 3FF64140| 3FF65140| RO
pointer
Current descriptor
SPI_OUTLINK_DSCR_BF1_REG , 3FF43144 | 3FF42144| 3FF64144 | 3FF65144 | RO
data pointer
DMA memory read
SPI_DMA_RSTATUS_REG 3FF43148| 3FF42148 | 3FF64148 | 3FF65148 | RO

status

Espressif Systems

134

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Name Description SPIO SPI1 SPI2 SPI3 Acc
DMA memory write

SPI_DMA_TSTATUS_REG ot 3FF4314C| 3FF4214C| 3FF6414C| 3FF6514C| RO
status

DMA interrupt registers

SPI_DMA_INT_RAW_REG Raw interrupt status | 3FF43114 | 3FF42114 | 3FF64114 | 3FF65114 | RO
Masked interrupt sta-

SPI_DMA_INT_ST_REG ; 3FF43118| 3FF42118| 3FF64118| 3FFE5118 | RO
us

SPI_DMA_INT_ENA_REG Interrupt enable bits | 3FF43110| 3FF42110| 3FF64110| 3FF65110| R/W

SPI_DMA_INT_CLR_REG Interrupt clear bits 3FF4311C| 3FF4211C| 3FF6411C| 3FFE511C| R/W

Espressif Systems

135

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

7.8 Registers

The addresses in parenthesis besides register names are the register addresses relative to the SPIO/SPI1/SPI12/SPI3
base addresses provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute
register addresses are listed in Section 7.7 Register Summary.

Register 7.1. SPI_CMD_REG (0x0)

N N
GQ)G K (@6
& O &

@ =3 @

‘31 19|18|17 0‘

\ooooooooooooo|o|oooooooooooooooooo\Reset

SPI_USR An SPI operation will be triggered when this bit is set. The bit will be cleared once the
operation is done. (R/W)

Register 7.2. SPI_ADDR_REG (0x4)

E]

‘ 0x000000000 \ Reset

SPI_ADDR_REG It stores the transmitting address when master is in half-duplex mode or QSPI mode.
If the address length is bigger than 32 bits, this register stores the higher 32 bits of address value,
SPI_SLV_WR_STATUS_REG stores the rest lower part of address value. If the address length is
smaller than 33 bits, this register stores all the address value. The register is in valid only when
SPI_USR_ADDR bit is set to 1. (R/W)

Espressif Systems 136 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.3. SPI_CTRL_REG (0x8)

& & ¢
FP0 © 5 F
L 9’\ /OQ 909 Q /O Q9Q9 4
> G LT EDe & > R >
é& Q;/ \/Q\\ <<Q\ g GQ’\ Q\ X . GQ’ Q\\ v Q,C\Q)
& LILLLE LY & A &
‘ 31 27| 26 25 24 23 22 21 20 19 15 14 13 12 0 ‘
[ooo o o ofoJoJofofo[1]ofo o o o ofo[1]o 0 0 0 0 0 0 0 0 0 0 0 OReset

SPI_WR_BIT_ORDER This bit determines the bit order for command, address and data in transmitted
signal. 1: sends LSB first; O: sends MSB first. (R/W)

SPI_RD_BIT_ORDER This bit determines the bit order for received data in received signal. 1: receives
LSB first; O: receives MSB first. (R/W)

SPI_FREAD_QIO This bit is used to enable four-line address writes and data reads in QSPI mode.
(R/W)

SPI_FREAD_DIO This bit is used to enable two-line address writes and data reads in QSPI mode.
(R/W)

SPI_WP This bit determines the write-protection signal output when SPI is idle in QSPI mode. 1:
output high; O: output low. (R/W)

SPI_FREAD_QUAD This bit is used to enable four-line data reads in QSPI mode. (R/W)
SPI_FREAD_DUAL This bit is used to enable two-line data reads in QSPI mode. (R/W)

SPI_FASTRD_MODE Reserved.

Register 7.4. SPI_CTRL1_REG (0xC)

A
\y\
54
VvV
o S
9 &
3 @
‘31 28|27 0‘
\0x05 oooooooooooooooooooooooooooo\Reset
SPI_CS_HOLD_DELAY Reserved.
Espressif Systems 137 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.5. SPI_RD_STATUS_REG (0x10)

Sl 5
< &
Q\/ %Q\/
‘31 24|23 16|15 0‘
\ 0x000 | 0x000 |0 0 0000 OO0OTU OGO OTU OGO OTU OO 0O \Reset

SPI_STATUS_EXT Reserved.

SPI_STATUS Reserved.

Espressif Systems 138 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.6. SPI_CTRL2_REG (0x14)

S
N2 N Q
Q g & O & ¢ ©
O O < < < A\ 7
< A/ A/ A/ A/ O < &
S S 2 2 2 2 D & S
S ¥ T T S &
N/ N/ 7 /
0%9 099 & & ®%O \%O o Ge)é o7 @é\
N/ N/ N/ N/ N/ N/ N/ %) N/ N/
& & & & & & & & & &
‘ 31 28 | 27 26 | 25 23|22 21|20 18 | 17 16 | 15 12|11 8|7 413 0 ‘
‘ 0x00 0x0 0x0 0x0 0x0 0x0 0x00 0x00 0x01 0x01 ‘ Reset

SPI_CS_DELAY_NUM Reserved.
SPI_CS_DELAY_MODE Reserved.

SPI_MOSI_DELAY_NUM 1t is used to configure the number of system clock cycles by which the
MOSI signals are delayed. (R/W)

SPI_MOSI_DELAY_MODE This register field determines the way the MOSI signals are delayed by
SPI clock. (R/W)
After being delayed by SPI_MOSI_DELAY_NUM system clocks, the MOSI signals will then be de-
layed by the configuration of SPI_MOSI_DELAY_MODE, specifically:
0: no delay.
1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MOSI signals are delayed by half a cycle,
otherwise they are delayed by one cycle.
2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MOSI signals are delayed by one cycle,
otherwise they are delayed by half a cycle.
3: the MOSI signals are delayed one cycle.

SPI_MISO_DELAY_NUM It is used to configure the number of system clock cycles by which the
MISO signals are delayed. (R/W)

SPI_MISO_DELAY_MODE This register field determines the way MISO signals are delayed by SPI
clock. (R/W)
After being delayed by SPI_MISO_DELAY_NUM system clock, the MISO signals will then be de-
layed by the configuration of SPI_MISO_DELAY_MODE, specifically:
0: no delay.
1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MISO signals are delayed by half a cycle,
otherwise they are delayed by one cycle.
2: if SPI_CK_OUT_EDGE or SPI_CK_|I_EDGE is set, the MISO signals are delayed by one cycle,
otherwise they are delayed by half a cycle.
3: the MISO signals are delayed by one cycle.

SPI_HOLD_TIME The number of SPI clock cycles by which CS pin signals are delayed. It is only valid
when SPI_CS_HOLD is set to 1. (R/W)

SPI_SETUP_TIME It is to configure the time between the CS signal active edge and the first SPI
clock edge. It is only valid in half-duplex mode or QSPI mode and when SPI_CS_SETUP is set to
1. (R/W)

Espressif Systems 139 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.7. SPI_CLOCK_REG (0x18)

%Q\i_
2 & < v
7 Q &2 & K7
& 7 > > >
7 © « « S

%Q\/ %Q\/ %Q\/ %Q\/ %Q\/
‘31|30 1E|l7 12|11 0‘
\ 1 | 0 000 0O OUO0TO OU OGO 0GOSO | 0x03 | ox01 0x03 \Reset

SPI_CLK_EQU_SYSCLK In master mode, when this bit is set to 1, SPI output clock is equal to system
clock; when set to 0, SPI output clock is divided from system clock. In slave mode, it should be

set to 0. (R/W)

SPI_CLKDIV_PRE In master mode, it is used to configure the pre-divider value for SPI output clock.
It is only valid when SPI_CLK_EQU_SYSCLK is Q. In slave mode, it should be set to 0. (R/W)

SPI_CLKCNT_N In master mode, it is used to configure the divider for SPI output clock. It is only
valid when SPI_CLK_EQU_SYSCLK is Q. In slave mode, it should be set to 0. (R/W)

SPI_CLKCNT_H In master mode, SPI_CLKCNT_H =
SPI_CLK_EQU_SYSCLK is 0. In slave mode, it should be set to 0. (R/W)

SPI_CLKCNT_L In master mode, it is equal to SPI_CLKCNT_N.
SPI_CLK_EQU_SYSCLK is 0. In slave mode, it should be set to 0. (R/W)

Espressif Systems 140
Submit Documentation Feedback

LSPI_CLK2CNT_N+1 _1J)

It is only valid when

is only valid when

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.8. SPI_USER_REG (0x1C)

L K
R
< XY >
N WENS o0 &E &
@?‘ @4 @4/‘2‘ 0 O O XY OQ\ QQQ/
NS NP & NP7 O QS Q& CELRS S
DR P PP P L2 LIANN S o)
Q\/Q\/Q§>Q\/Q\/Q§>Q\/Q\/ D) Q§Q§Q§Q§ Vs O R S
S 58 O FFEEF 07 & e & P
N NN NN N N/ ON/ N7 NS NN N ONZ ON/ N NN/ ON/ N/
PELE R LI & £RLLYLLY & 899 & 8
‘31 30 | 29 28 27 | 26 25 24 |23 17| 16 15 14 13 12 11 10 |9 8| 7 6 5 4 |3 1 0 ‘
\1oooooooooooooooooooooo olo]1]o]o]o oo\Reset

SPI_USR_COMMAND This bit enables the command phase of an SPI operation in SPI half-duplex
mode and QSPI mode. (R/W)

SPI_USR_ADDR This bit enables the address phase of an SPI operation in SPI half-duplex mode and
QSPI mode. (R/W)

SPI_USR_DUMMY This bit enables the dummy phase of an SPI operation in SPI half-duplex mode
and QSPI mode. (R/W)

SPI_USR_MISO This bit enables the read-data phase of an SPI operation in SPI half-duplex mode
and QSPI mode. (R/W)

SPI_USR_MOSI This bit enables the write-data phase of an SPI operation in SPI half-duplex mode
and QSPI mode. (R/W)

SPI_USR_DUMMY_IDLE The SPI clock signal is disabled in the dummy phase when the bit is set in
SPI half-duplex mode and QSPI mode. (R/W)

SPI_USR_MOSI_HIGHPART If set, MOSI data is stored in SPI_W8 ~ SPI_W15 of the SPI buffer.
(R/W)

SPI_USR_MISO_HIGHPART [f set, MISO data is stored in SPI_W8 ~ SPI_W15 of the SPI buffer.
(R/W)

SPI_SIO Set this bit to enable three-line half-duplex communication. (R/W)
SPI_FWRITE_QIO Reserved.

SPI_FWRITE_DIO Reserved.

SPI_FWRITE_QUAD Reserved.

SPI_FWRITE_DUAL Reserved.

SPI_WR_BYTE_ORDER This bit determines the byte order of the command, address and data in
transmitted signal. 1: big-endian; 0: little-endian. (R/W)

SPI_RD_BYTE_ORDER This bit determines the byte order of received data in transmitted signal. 1:
big-endian; O: little_endian. (R/W)

SPI_CK_OUT_EDGE This bit, combined with SPI_MOSI_DELAY_MODE, sets the MOSI signal delay
mode. It is only valid in master mode. (R/W)

SPI_CK_I_EDGE In slave mode, the bit is the same as SPI_CK_OUT_EDGE in master mode. It is
combined with SPI_MISO_DELAY_MODE. It is only valid in slave mode. (R/W)

Continued on the next page... _
Espressif Systems 141 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.8. SPI_USER_REG (0x1C)

Continued from the previous page...

SPI_CS_SETUP Setting this bit enables a delay between CS active edge and the first clock edge,
in multiples of one SPI clock cycle. In full-duplex mode and QSPI mode, setting this bit results in
(SPI_SETUP_TIME + 1.5) SPI clock cycles delay. In full-duplex mode, there will be 1.5 SPI clock
cycles delay for modeO and mode2, and 1 SPI clock cycle delay for mode1 and mode3. (R/W)

SPI_CS_HOLD Setting this bit enables a delay between the end of a transmission and CS being
inactive, as specified in SPI_HOLD_TIME. (R/W)

SPI_DOUTDIN Set the bit to enable full-duplex communication. (R/W)

Register 7.9. SPI_USER1_REG (0x20)

%
8
< O
6 A/
7 3
N N
o > o
2 é\\@)
%Q\/ ‘Q)% %Q\/

‘ 31 26| 25 8|7 0 ‘
\ 23 O 000 0O OO0 OGO OO OO OGO OGO OO0 0 O 7 \Reset

SPI_USR_ADDR_BITLEN It indicates the bit length of the transmitted address minus one in half-
duplex mode and QSPI mode, in multiples of one bit. It is only valid when SPI_USR_ADDR is set
to 1. (RO)

SPI_USR_DUMMY_CYCLELEN It indicates the number of SPI clock cycles for the dummy phase
minus one in SPI half-duplex mode and QSPI mode. It is only valid when SPI_USR_DUMMY is set

to 1. (R/'W)

Espressif Systems 142 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.10. SPI_USER2_REG (0x24)

& &
N R\
L7 Q7
& &
S S
QO ®)
9 R S)
S & $
Q\/ &2)0_) Q\/

‘31 28|27 16|l5 0‘
\ 7 |o 0 000 00 O0UO0 0 O o|o 0 000 0OOGOT OGO OTU OGO 00 O O‘Reset

SPI_USR_COMMAND_BITLEN It indicates the bit length of the command phase minus one in SPI
half-duplex mode and QSPI mode. It is only valid when SPI_USR_COMMAND is set to 1. (R/W)

SPI_USR_COMMAND_VALUE It indicates the value of the command to be transmitted in SPI half-
duplex mode and QSPI mode. It is only valid when SPI_USR_COMMAND is set to 1. (R/W)

Register 7.11. SPI_MOSI_DLEN_REG (0x28)

%
NS
Q
Q
9\/
@O
> 7
& NZ
&Q’% %Q\/
‘31 24|23 0‘
\o 0 0 00 0 O o| 0x0000000 \Reset

SPI_USR_MOSI_DBITLEN It indicates the length of MOSI data minus one, in multiples of one bit. It
is only valid when SPI_USR_MOSI is set to 1 in master mode. (R/W)

Register 7.12. SPI_MISO_DLEN_REG (0x2C)

%
NS
Q
oY
-
B >
© N3
%)
\&Q)‘b %Q\/
‘31 24|23 0‘
\o 0 0 00 0 0 O 0x0000000 \Reset

SPI_USR_MISO_DBITLEN It indicates the length of MISO data minus one, in multiples of one bit. It
is only valid when SPI_USR_MISO is set to 1 in master mode. (R/W)

Espressif Systems 143 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.13. SPI_SLV_WR_STATUS_REG (0x30)

E]

\oooooooooooooooooooooooooooooooo\Reset

SPI_SLV_WR_STATUS_REG In the slave mode this register is the status register for the master to
write the slave. In the master mode, if the address length is bigger than 32 bits, SPI_ADDR_REG
stores the higher 32 bits of address value, and this register stores the rest lower part of address

value. (R/W)
Register 7.14. SPI_PIN_REG (0x34)
& N v
6§0(</ \(_?(O 80
& Y@Q @9 <b9% S OO
S NPAC PR
®® \/E- /Q\/ > %&Q/ N %&Q/ 9\) q/? NS Q?
PSS 59 X\ R R R s
\@% %Q\/%Q\/ \@% éz\/ \@% %Q\/ %Q\/ &2‘6 %Q\/ %Q\/%Q\/
‘31|30|29|28 14|13 ll|10 9|8 6|5|4 3|2|1|0‘
\o|o|o|o 0 000 0O0DO0OO0OUOTO OU OO0 O o|o 0 o|o o|ooooo|o|o 0|1|1|0\Reset

SPI_CS_KEEP_ACTIVE This bit is only used in master mode where when it is set, the CS signal will
keep active. (R/W)

SPI_CK_IDLE_EDGE This bit is only used in master mode to configure the logicl level of SPI output
clock in idle state. (R/W)
1: the spi_clk line keeps high when idle;
0: the spi_clk line keeps low when idle.

SPI_MASTER_CK_SEL Reserved.

SPI_MASTER_CS_POL Reserved.

SPI_CK_DIS Reserved.

SPI_CS2_DIS This bit enables the SPI CS2 signal. 1: disables CS2; 0: enables CS2. (R/W)
SPI_CS1_DIS This bit enables the SPI CS1 signal. 1: disables CS1; 0: enables CS1. (R/W)

SPI_CSO0_DIS This bit enables the SPI CS0 signal. 1: disables CS0; 0: enables CS0. (R/W)

Espressif Systems 144 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.15. SPI_SLAVE_REG (0x38)

> o ©
N z\v%é/ & $\§ é\%@é\%@ %
L SFORIF & &¥ o ¢ &L PXPASA S /O%Q’%/\VCQ?/\§< K
Q<~</ @Q\/Q\/QQ/ 9 %«/ %&/ @OQ > Q\/Q?Q\/Q/ > Q7 /Q\/O/
RN S W ~ > SISO N
\ék\ 3\ \/\%\/\%\/ \&Q\ \%\/ \%\/ QJGQ) \O%/ \&Q\\%\/\%\/\ \/\ \/\ Q\\%\/\ \/\%\/\%\/
%Q/%Q/%Q/%Q/Q/ Q/ %Q/ %Q/ \kg %Q/ Q/%Q/%Q/%Q/%Q/Q/%Q/%Q/%Q/%Q/

SPI_SYNC_RESET When set, it resets the latched values of the SPI clock line, CS line and data line.
(R/W)

SPI_SLAVE_MODE This bit is used to set the mode of the SPI device. (R/W)
1: slave mode;
0: master mode.

SPI_SLV_WR_RD_BUF_EN This bit is only used in slave half-duplex mode, where when it is set, the
write and read data commands are enabled. (R/W)

SPI_SLV_WR_RD_STA_EN This bit is only used in slave half-duplex mode, where when it is set, the
write and read status commands are enabled. (R/W)

SPI_SLV_CMD_DEFINE Reserved.

SPI_TRANS_CNT The counter for operations in both the master mode and the slave mode. (RO)
SPI_SLV_LAST_STATE In slave mode, this contains the state of the SPI state machine. (RO)
SPI_SLV_LAST_COMMAND Reserved.

SPI_CS_I_MODE Reserved.

SPI_TRANS_INTEN The interrupt enable bit for the SPI_TRANS_DONE_INT interrupt. (R/W)
SPI_SLV_WR_STA_INTEN The interrupt enable bit for the SPI_SLV_WR_STA_INT interrupt. (R/W)
SPI_SLV_RD_STA_INTEN The interrupt enable bit for the SPI_SLV_RD_STA_INT interrupt. (R/W)
SPI_SLV_WR_BUF_INTEN The interrupt enable bit for the SPI_SLV_WR_BUF_INT interrupt. (R/W)
SPI_SLV_RD_BUF_INTEN The interrupt enable bit for the SPI_SLV_RD_BUF_INT interrupt. (R/W)

SPI_TRANS_DONE The raw interrupt status bit for the SPI_TRANS_DONE_INT interrupt. It is set by
hardware and cleared by software. (R/W)

SPI_SLV_WR_STA_DONE The raw interrupt status bit for the SPI_SLV_WR_STA_INT interrupt. It is
set by hardware and cleared by software, and only applicable to slave half-duplex mode. (R/W)

SPI_SLV_RD_STA_DONE The raw interrupt status bit for the SPI_SLV_RD_STA_INT interrupt. It is
set by hardware and cleared by software, and only applicable to slave half-duplex mode. (R/W)

Continued on the next page...

Espressif Systems 145 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.15. SPI_SLAVE_REG (0x38)

Continued from the previous page ...

SPI_SLV_WR_BUF_DONE The raw interrupt status bit for the SPI_SLV_WR_BUF_INT interrupt. It is
set by hardware and cleared by software, and only applicable to slave half-duplex mode. (R/W)

SPI_SLV_RD_BUF_DONE The raw interrupt status bit for the SPI_SLV_RD_BUF_INT interrupt. It is
set by hardware and cleared by software, and only applicable to slave half-duplex mode. (R/W)

Register 7.16. SPI_SLAVE1_REG (0x3C)

= S S
N S & & RN
& > MRS
3 W& S ® & P PP
/ O 7 % N
D QN QO N NI
é\é %/\"?&%/\é \ QQY Q&7 X QQ% X N4
W Y S 37 Q ATAPAT S
\?\/ \?\/\?\/ @Q’é@ \?\/ \?\/ ’ \?\/\/\/\?\/\?\/
EX & 8 8 LYY
‘31 27|26|25|24 16|15 10|9 4|3|2|1|0‘
\o 0 0 o o|o|1|o 0 0000 0 O o| 0x00 | 0x00 |0|o|o|o\Reset

SPI_SLV_STATUS_BITLEN It is only used in slave half-duplex mode to configure the length of the
master writing into the status register. (R/W)

SPI_SLV_STATUS_FAST_EN Reserved.
SPI_SLV_STATUS_READBACK Reserved.

SPI_SLV_RD_ADDR_BITLEN It indicates the address length in bits minus one for a slave-read oper-
ation. It is only valid in slave half-duplex mode. (R/W)

SPI_SLV_WR_ADDR_BITLEN [t indicates the address length in bits minus one for a slave-write op-
eration. It is only valid in slave half-duplex mode. (R/W)

SPI_SLV_WRSTA_DUMMY_EN In slave mode, this bit enables the dummy phase for write-status
operations. It is only valid in slave half-duplex mode.(R/W)

SPI_SLV_RDSTA_DUMMY_EN In slave mode, this bit enables the dummy phase for read-status
operations. It is only valid in slave half-duplex mode. (R/W)

SPI_SLV_WRBUF_DUMMY_EN In slave mode, this bit enables the dummy phase for write-buffer
operations. It is only valid in slave half-duplex mode. (R/W)

SPI_SLV_RDBUF_DUMMY_EN In slave mode, this bit enables the dummy phase for read-buffer
operations. It is only valid in slave half-duplex mode. (R/W)

Espressif Systems 146 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.17. SPI_SLAVE2_REG (0x40)

‘31 24|23 16 | 15 8|7

‘O 0 0 0 0O 0 0 O 0x000 0x000

0x000 |Reset

SPI_SLV_WRBUF_DUMMY_CYCLELEN It indicates the number of SPI clock cycles minus one for
the dummy phase for write-data operations. It is only valid when SPI_SLV_WRBUF_DUMMY_EN

is set to 1 in slave half-duplex mode. (R/W)

SPI_SLV_RDBUF_DUMMY_CYCLELEN It indicates the number of SPI clock cycles minus one for
the dummy phase for read-data operations. It is only valid when SPI_SLV_RDBUF_DUMMY_EN is

set to 1 in slave half-duplex mode. (R/W)

SPI_SLV_WRSTA_DUMMY_CYCLELEN [t indicates the number of SPI clock cycles minus
one for the dummy phase for write-status register operations. It is only valid when

SPI_SLV_WRSTA_DUMMY_EN is set to 1 in slave half-duplex mode. (R/W)

SPI_SLV_RDSTA_DUMMY_CYCLELEN It indicates the number of SPI clock cycles minus
one for the dummy phase for read-status register operations. [t is only valid when

SPI_SLV_RDSTA_DUMMY_EN is set to 1 in slave half-duplex mode. (R/W)

Register 7.18. SPI_SLAVE3_REG (0x44)

[o]
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o

o
o

o

o

o

o

o

o

el

]

o

SPI_SLV_WRSTA_CMD_VALUE Reserved.
SPI_SLV_RDSTA_CMD_VALUE Reserved.
SPI_SLV_WRBUF_CMD_VALUE Reserved.

SPI_SLV_RDBUF_CMD_VALUE Reserved.

Espressif Systems 147 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.19. SPI_SLV_WRBUF_DLEN_REG (0x48)

é
NS
Q
Q
0((/
QD
$Q‘
Q)& N2
S >’
ﬂQ)% %Q\/
‘31 24 | 23 0‘
\o 0 0 00 0 0 O 0x0000000 \Reset

SPI_SLV_WRBUF_DBITLEN It indicates the length of written data minus one, in multiples of one bit.
It is only valid in slave half-duplex mode. (R/W)

Register 7.20. SPI_SLV_RDBUF_DLEN_REG (0x4C)

%
NG
Q
Q
\><</
O@
e
Q)& A/
S =
§fo’ %Q\/
‘31 24|23 0‘
\o 0 0 00 0 0 O 0x0000000 \Reset

SPI_SLV_RDBUF_DBITLEN It indicates the length of read data minus one, in multiples of one bit. It
is only valid in slave half-duplex mode. (R/W)

Register 7.21. SPI_SLV_RD_BIT_REG (0x64)

2
\eZ
&
5
N/

‘31 24|23 0‘

\oooooooo|ooo0oooooooooooooooooooo\Reset

SPI_SLV_RDATA_BIT It indicates the bit length of data the master reads from the slave, minus one.
It is only valid in slave half-duplex mode. (R/W)

Register 7.22. SPI_Wn_REG (: 0-15) (0x80+4*)

E]

\oooooooooooooooooooooooooooooooo\Reset

SPI_Wn_REG Data buffer. (R/W)

Espressif Systems 148 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.23. SPI_TX_CRC_REG (0xC0)

E]

\oooooooooooooooooooooooooooooooo\Reset

SPI_TX_CRC_REG Reserved.

Register 7.24. SPI_EXT2_REG (0xF8)

)

&° &
QJ"O
A

SPI_ST The current state of the SPI state machine: (RO)
: idle state

o

. preparation state

: send command state
: send data state

: read data state

: write data state

: wait state

~N OO O A WDN =

. done state

Espressif Systems 149 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.25. SPI_DMA_CONF_REG (0x100)

~ >
. LA T <
S PESE S
9.9 XD S KA
N Sn IR IE 5 TS s
PR S K ’ SO,
@Q’{@ \9®\9®\9®%®é®\/®0\§0\9\>\9\> %Q’Q\Q) \?\3\\3\3\\9\)0%/ %Q’GQJ
@ FETFEIFTEE @ TS @
‘ 31 17| 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0 ‘
\oooooooooooooooooooooo10oooooooO\Rese»c

SPI_DMA_CONTINUE This bit enables SPI DMA continuous data TX/RX mode. (R/W)
SPI_DMA_TX_STOP When in continuous TX/RX mode, setting this bit stops sending data. (R/W)
SPI_DMA_RX_STOP When in continuous TX/RX mode, setting this bit stops receiving data. (R/W)
SPI_OUT_DATA_BURST_EN SPI DMA reads data from memory in burst mode. (R/W)
SPI_INDSCR_BURST_EN SPI DMA reads inlink descriptor in burst mode. (R/W)
SPI_OUTDSCR_BURST_EN SPI DMA reads outlink descriptor in burst mode. (R/W)

SPI_OUT_EOF_MODE DMA out-EOF-flag generation mode. (R/W)
1: out-EOF-flag is generated when DMA has popped all data from the FIFO;
0: out-EOF-flag is generated when DMA has pushed all data to the FIFO.

SPI_AHBM_RST reset SPI DMA AHB master. (R/W)
SPI_AHBM_FIFO_RST This bit is used to reset SPI DMA AHB master FIFO pointer. (R/W)
SPI_OUT_RST The bit is used to reset DMA out-FSM and out-data FIFO pointer. (R/W)

SPI_IN_RST The bit is used to reset DMA in-DSM and in-data FIFO pointer. (R/W)

Register 7.26. SPI_DMA_OUT_LINK_REG (0x104)

s N Q &
& AV &
S il
D \Sg\> \Sg\> \Sg\> D 0,g\>
@Q’é \/O \/O \/O é”c\ \9

NG N S
‘ 31 30 29 28 |27 20 | 19 0 ‘
‘ ofojojofo o o O O O O O 0x000000 ‘Reset

SPI_OUTLINK_RESTART Set the bit to add new outlink descriptors. (R/W)
SPI_OUTLINK_START Set the bit to start to use outlink descriptor. (R/W)
SPI_OUTLINK_STOP Set the bit to stop to use outlink descriptor. (R/W)

SPI_OUTLINK_ADDR The address of the first outlink descriptor. (R/W)

Espressif Systems 150 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.27. SPI_DMA_IN_LINK_REG (0x108)

£ g
7/
A S0 s
SGGH Sl Sl

OO & S &
Q)%Q) Q\> 6Q\> %Q\> \,\®%® %Q\> %Q\>
Nl
‘31|30|29|28|27 21|20|19 0‘
\o|o|o|o|o 0 0 0 0 O o|o| 0x000000

‘ Reset

SPI_INLINK_RESTART Set the bit to add new inlink descriptors. (R/W)
SPI_INLINK_START Set the bit to start to use inlink descriptor. (R/W)
SPI_INLINK_STOP Set the bit to stop to use inlink descriptor. (R/W)

SPL_INLINK_AUTO_RET when the bit is set, inlink descriptor jumps to the next descriptor when a
packet is invalid. (R/W)

SPI_INLINK_ADDR The address of the first inlink descriptor. (R/W)

Register 7.28. SPI_DMA_STATUS_REG (0x10C)

EON
S Q
S G
(@b @?‘ @?‘
& N Q\</>
N2 S S
‘31 2 1 0 ‘

\oooooooooooooooooooooooooooooooo\Reset

SPI_DMA_TX_EN SPI DMA write-data status bit. (RO)

SPI_DMA_RX_EN SPI DMA read-data status bit. (RO)

Espressif Systems 151 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.29. SPI_DMA_INT_ENA_REG (0x110)

é
&

SPI_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the SPI_OUT_TOTAL_EOF_INT inter-
rupt. (R/W)

SPI_OUT_EOF_INT_ENA The interrupt enable bit for the SPI_OUT_EOF_INT interrupt. (R/W)
SPI_OUT_DONE_INT_ENA The interrupt enable bit for the SPI_OUT_DONE_INT interrupt. (R/W)
SPI_IN_SUC_EOF_INT_ENA The interrupt enable bit for the SPI_IN_SUC_EOF_INT interrupt. (R/W)
SPI_IN_ERR_EOF_INT_ENA The interrupt enable bit for the SPI_IN_ERR_EOF_INT interrupt. (R/W)
SPI_IN_DONE_INT_ENA The interrupt enable bit for the SPI_IN_DONE_INT interrupt. (R/W)

SPI_INLINK_DSCR_ERROR_INT_ENA The interrupt enable bit for the
SPI_INLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_OUTLINK_DSCR_ERROR_INT_ENA The interrupt enable bit for the
SPI_OUTLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_INLINK_DSCR_EMPTY_INT_ENA The interrupt enable bit for the
SPI_INLINK_DSCR_EMPTY_INT interrupt. (R/W)

Espressif Systems 152 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.30. SPI_DMA_INT_RAW_REG (0x114)

A7
N ¥ o O
SoS F IR E
FFL SIS
Q/é\/\éQ,Q, &/Q\/%Q &7
RIS &L AR OIS
o (O /O Q/Q\/ %Q//9$\£_/ 9
GO LIS
@6\ 6&/\3&/\3&/@ <& Q \>$0 S
& SCRASOHOGOOSN
&é‘o C_;Q\/%Q\/@Q\/@Q\/éz\/éz\/@q\/(g\/fg\/
‘31 9 8 7 6 5 4 3 2 1 0 ‘
\oooooooooooooooooooooooooooooooo\Reset
SPI_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the SPI_OUT_TOTAL_EOF_INT in-
terrupt. (RO)
SPI_OUT_EOF_INT_RAW The raw interrupt status bit for the SPI_OUT_EOF_INT interrupt. (RO)
SPI_OUT_DONE_INT_RAW The raw interrupt status bit for the SPI_OUT_DONE_INT interrupt. (RO)
SPI_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the SPI_IN_SUC_EOF_INT interrupt.
(RO)
SPI_IN_ERR_EOF_INT_RAW The raw interrupt status bit for the SPI_IN_ERR_EOF_INT interrupt.
(RO)
SPI_IN_DONE_INT_RAW The raw interrupt status bit for the SPI_IN_DONE_INT interrupt. (RO)
SPI_INLINK_DSCR_ERROR_INT_RAW The raw interrupt status bit for the
SPI_INLINK_DSCR_ERROR_INT interrupt. (RO)
SPI_OUTLINK_DSCR_ERROR_INT_RAW The raw interrupt status bit for the
SPI_OUTLINK_DSCR_ERROR_INT interrupt. (RO)
SPI_INLINK_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the
SPI_INLINK_DSCR_EMPTY_INT interrupt. (RO)
Espressif Systems 153 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.31. SPI_DMA_INT_ST_REG (0x118)

Espressif Systems

SPI_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the SPI_OUT_TOTAL_EOF_INT
interrupt. (RO)

SPI_OUT_EOF_INT_ST The masked interrupt status bit for the SPI_OUT_EOF_INT interrupt. (RO)

SPI_OUT_DONE_INT_ST The masked interrupt status bit for the SPI_OUT_DONE_INT interrupt.
(RO)

SPI_IN_SUC_EOF_INT_ST The masked interrupt status bit for the SPI_IN_SUC_EOF_INT interrupt.
(RO)

SPI_IN_ERR_EOF_INT_ST The masked interrupt status bit for the SPI_IN_ERR_EOF_INT interrupt.
(RO)

SPI_IN_DONE_INT_ST The masked interrupt status bit for the SPI_IN_DONE_INT interrupt. (RO)

SPI_INLINK_DSCR_ERROR_INT_ST The masked interrupt status bit for the
SPI_INLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_OUTLINK_DSCR_ERROR_INT_ST The masked interrupt status bit for the
SPI_OUTLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_INLINK_DSCR_EMPTY_INT_ST The masked interrupt status bit for the

SPI_INLINK_DSCR_EMPTY_INT interrupt. (RO)

154
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.32. SPI_DMA_INT_CLR_REG (0x11C)

SPI_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the SPI_OUT_TOTAL_EOF_INT interrupt. (R/W)
SPI_OUT_EOF_INT_CLR Set this bit to clear the SPI_OUT_EOF_INT interrupt. (R/W)
SPI_OUT_DONE_INT_CLR Set this bit to clear the SPI_OUT_DONE_INT interrupt. (R/W)
SPI_IN_SUC_EOF_INT_CLR Set this bit to clear the SPI_IN_SUC_EOF_INT interrupt. (R/W)
SPI_IN_ERR_EOF_INT_CLR Set this bit to clear the SPI_IN_ERR_EOF_INT interrupt. (R/W)
SPI_IN_DONE_INT_CLR Set this bit to clear the SPI_IN_DONE_INT interrupt. (R/W)

SPI_INLINK_DSCR_ERROR_INT_CLR Set this bit to clear the SPI_INLINK_DSCR_ERROR_INT in-
terrupt. (R/W)

SPI_OUTLINK_DSCR_ERROR_INT_CLR Set this bit to clear the
SPI_OUTLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_INLINK_DSCR_EMPTY_INT_CLR Set this bit to clear the SPI_INLINK_DSCR_EMPTY_INT in-
terrupt. (R/W)

Register 7.33. SPI_IN_ERR_EOF_DES_ADDR_REG (0x120)

E]

\oooooooooooooooooooooooooooooooo\Reset

SPI_IN_ERR_EOF_DES_ADDR_REG The inlink descriptor address when SPI DMA encountered an
error in receiving data. (RO)

Register 7.34. SPI_IN_SUC_EOF_DES_ADDR_REG (0x124)

E]

\oooooooooooooooooooooooooooooooo\Rese»c

SPI_IN_SUC_EOF_DES_ADDR_REG The last inlink descriptor address when SPI DMA encountered
EOF. (RO)

Espressif Systems 155 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.35. SPI_INLINK_DSCR_REG (0x128)

E]

]oooooooooooooooooooooooooooooooo\Reset

SPI_INLINK_DSCR_REG The address of the current inlink descriptor. (RO)

Register 7.36. SPI_INLINK_DSCR_BF0_REG (0x12C)

E]

]oooooooooooooooooooooooooooooooo\Reset

SPI_INLINK_DSCR_BFO0_REG The address of the next inlink descriptor. (RO)

Register 7.37. SPI_INLINK_DSCR_BF1_REG (0x130)

E]

]oooooooooooooooooooooooooooooooo\Reset

SPI_INLINK_DSCR_BF1_REG The address of the next inlink data buffer. (RO)

Register 7.38. SPI_OUT_EOF_BFR_DES_ADDR_REG (0x134)

E]

]oooooooooooooooooooooooooooooooo\Reset

SPI_OUT_EOF_BFR_DES_ADDR_REG The buffer address corresponding to the outlink descriptor
that produces EOF. (RO)

Register 7.39. SPI_OUT_EOF_DES_ADDR_REG (0x138)

E]

]oooooooooooooooooooooooooooooooo\Reset

SPI_OUT_EOF_DES_ADDR_REG The last outlink descriptor address when SPI DMA encountered
EOF. (RO)

Espressif Systems 156 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.40. SPI_OUTLINK_DSCR_REG (0x13C)

E]

]oooooooooooooooooooooooooooooooo\Reset

SPI_OUTLINK_DSCR_REG The address of the current outlink descriptor. (RO)

Register 7.41. SPI_OUTLINK_DSCR_BFO0_REG (0x140)

E]

]oooooooooooooooooooooooooooooooo\Reset

SPI_OUTLINK_DSCR_BFO0_REG The address of the next outlink descriptor. (RO)

Register 7.42. SPI_OUTLINK_DSCR_BF1_REG (0x144)

E]

]oooooooooooooooooooooooooooooooo\Reset

SPI_OUTLINK_DSCR_BF1_REG The address of the next outlink data buffer. (RO)

Register 7.43. SPI_DMA_RSTATUS_REG (0x148)

S
S
Q/Q\\V OQ{O
S N ©
& s &
<_/ 'Q\"/ &2}5 ,<_/

’31|30|29 20|19 0‘

]o|o|oooooooooo|oooooooooooooooooooo‘Reset

TX_FIFO_EMPTY The SPI DMA TX FIFO is empty. (RO)
TX_FIFO_FULL The SPI DMA TX FIFO is full. (RO)

TX_DES_ADDRESS The LSB of the SPI DMA outlink descriptor address. (RO)

Espressif Systems 157 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

7 SPI Controller (SPI)

Register 7.44. SPI_DMA_TSTATUS_REG (0x14C)

©
& &
O s &
& é &
‘ 31| 30 |29 20| 19

\oooooooooooo

RX_FIFO_EMPTY The SPI DMA RX FIFO is empty. (RO)
RX_FIFO_FULL The SPI DMA RX FIFO is full. (RO)

RX_DES_ADDRESS The LSB of the SPI DMA inlink descriptor address. (RO)

Espressif Systems 158

ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

8 SDIO Slave Controller

8.1 Overview

The ESP32 features hardware support for the industry-standard Secure Digital (SD) device interface that
conforms to the SD Input/Output (SDIO) Specification Version 2.0. This allows a host controller to access the
ESP32 via an SDIO bus protocol, enabling high-speed data transfer.

The SDIO interface may be used to read ESP32 SDIO registers directly and access shared memory via Direct
Memory Access (DMA), thus reducing processing overhead while maintaining high performance.

8.2 Features
e Meets SDIO V2.0 specification

e Supports SDIO SPI, 1-bit, and 4-bit transfer modes

e Full host clock range of O ~ 50 MHz

e Configurable sample and drive clock edge

¢ Integrated, SDIO-accessible registers for information interaction

e Supports SDIO interrupt mechanism

* Automatic data padding

e Block size of up to 512 bytes

¢ nterrupt vector between Host and Slave for bidirectional interrupt

e Supports DMA for data transfer

8.3 Functional Description

8.3.1 SDIO Slave Block Diagram
The functional block diagram of the SDIO slave module is shown in Figure 8-1.

ESP32

AHB BUS

RAM

Host System

Internal BUS SDIO Device SDIO BUS Host SDIO

- bMA Interface Interface Interface

A

Figure 8-1. SDIO Slave Block Diagram

The Host System represents any SDIO specification V2.0-compatible host device. The Host System interacts
with the ESP32 (configured as the SDIO slave) via the standard SDIO bus implementation.

The SDIO Device Interface block enables effective communication with the external Host by directly providing
SDIO interface registers and enabling DMA operation for high-speed data transfer over the Advanced
High-performance Bus (AHB) without engaging the CPU.

Espressif Systems 159 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

8.3.2 Sending and Receiving Data on SDIO Bus
Data is transmitted between Host and Slave through the SDIO bus I/0O Functioni. After the Host enables the I/O
Function1 in the Slave, according to the SDIO protocol, data transmission will begin.

ESP32 segregates data into packets sent to/from the Host. To achieve high bus utilization and data transfer
rates, we recommend the single block transmission mode. For detailed information on this mode, please refer to
the SDIO V2.0 protocol specification. When Host and Slave exchange data as blocks on the SDIO bus, the Slave
automatically pads data-when sending data out-and automatically strips padding data from the incoming data
block.

Whether the Slave pads or discards the data depends on the data address on the SDIO bus. When the data
address is equal to, or greater than, 0x1F800, the Slave will start padding or discarding data. Therefore, the
starting data address should be 0x1F800 - Packet_length, where Packet_length is measured in bytes. Data flow
on the SDIO bus is shown in Figure 8-2.

Packet P?:lding
block 0 |CRC block 1 |CRC| --- black n [CRC
Addr:0x1F800 - Packet_length Addr:0x1F800

Figure 8-2. SDIO Bus Packet Transmission

The standard IO_RW_EXTENDED (CMD53) command is used to initiate a packet transfer of an arbitrary length.
The content of the CMD53 command used in data transmission is as illustrated in Figure 8-3 below. For detailed
information on CMD53, please refer to the SDIO protocol specifications.

Command R/W Function | Block | OP Register Address Byte/Block Count

S|(D Index fla Number | Mode | Code 0X1F8900-Packet lenath Roundup CRC7 E
110101b 9 o00tb | 1b | 1b —NIMN | packet_length/Block_size)

11 6 1 3 1 1 17 9 7 1

Figure 8-3. CMD53 Content

8.3.3 Register Access

For effective interaction between Host and Slave, the Host can access certain registers in the Slave via the SDIO
bus I/0O Function1. These registers are in continuous address fields from SLCOHOST_TOKEN_RDATA to
SLCHOST_INF_ST. The Host device can access these registers by simply setting the register addresses of
CMD52 or CMD53 to the low 10 bits of the corresponding register address. The Host can access several
consecutive registers at one go with CMD53, thus achieving a higher effective transfer rate.

There are 54 bytes of field between SLCHOST_CONF_WO_REG and SLCHOST_CONF_W15_REG. Host and
Slave can access and change these fields, thus facilitating the information interaction between Host and
Slave.

8.3.4 DMA
The SDIO Slave module uses dedicated DMA to access data residing in the RAM. As shown in Figure 8-1, the
RAM is accessed over the AHB. DMA accesses RAM through a linked-list descriptor. Every linked list is

Espressif Systems 160 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

composed of three words, as shown in Figure 8-4.

1 1 6 12 12

Owner| Eof |[Reserved| Length Size

Buffer Address Pointer

Next Descriptor Address

Figure 8-4. SDIO Slave DMA Linked List Structure

e Owner: The allowed operator of the buffer that corresponds to the current linked list. 0: CPU is the allowed
operator; 1: DMA is the allowed operator.

o Eof: End-of-file marker, indicating that this linked-list element is the last element of the data packet.

e | ength: The number of valid bytes in the buffer, i.e., the number of bytes that should be accessed from the
buffer for reading/writing.

e Size: The maximum number of available buffers.

¢ Buffer Address Pointer: The address of the data buffer as seen by the CPU (according to the RAM address
space).

e Next Descriptor Address: The address of the next linked-list element in the CPU RAM address space. If the
current linked list is the last one, the Eof bit should be 1, and the last descriptor address should be O.

The Slave’s linked-list chain is shown in Figure 8-5:

Descriptor 0 Data Buffer 0 ‘

I

—>
Descriptor 1 Data Buffer 1 ‘
Descriptor n-1 44 Data Buffer n-1 ‘

—>
Descriptor n 44 Data Buffer n ‘

Figure 8-5. SDIO Slave Linked List

8.3.5 Packet-Sending/-Receiving Procedure
The SDIO Host and Slave devices need to follow specific data transfer procedures to successfully exchange data
over the SDIO interface.

Espressif Systems 161 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

8.3.5.1 Sending Packets to SDIO Host

The transmission of packets from Slave to Host is initiated by the Slave. The Host will be notified with an interrupt
(for detailed information on interrupts, please refer to SDIO protocol). After the Host reads the relevant
information from the Slave, it will initiate an SDIO bus transaction accordingly. The whole procedure is illustrated
in Figure 8-6.

Host ; Slave

CPU prepares linked
list chain
Waits for the last
transmission completed

CPU refreshes
SLCHOST_PKT_LEN

CPU initiates DMA
Slave sends interrupt to
Host

Host responds to interrupt

v

Reads Slave register

including SLCOHOST_INT_ST ‘
' SLCHOST_PKT_LEN) ;

Sends CMD53

Slave clears interrupt
automatically

i : DMA transfers data
R dat:
ecelves data H ISDIO Physical Bus sends data
Transmission completed Transmission completed

Slave sends interrupt to
CPU

Discards padding data

Packet processing

CPU retrieves buffer

Figure 8-6. Packet Sending Procedure (Initiated by Slave)

When the Host is interrupted, it reads relevant information from the Slave by visiting registers SLCOHOST_INT
and SLCHOST_PKT_LEN.

e SLCOHOST_INT: Interrupt status register. If the value of SLCO_RX_NEW_PACKET_INT_ST is 1, this
indicates that the Slave has a packet to send.

o SLCHOST_PKT_LEN: Packet length accumulator register. The current value minus the value of last time
equals the packet length sent this time.

In order to start DMA, the CPU needs to write the low 20 bits of the address of the first linked-list element to the

Espressif Systems 162 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

SLCO_RXLINK_ADDR bit of SLCORX_LINK, then set the SLCO_RXLINK_START bit of SLCORX_LINK. The DMA
will automatically complete the data transfer. Upon completion of the operation, DMA will interrupt the CPU so
that the buffer space can be freed or reused.

8.3.5.2 Receiving Packets from SDIO Host

Transmission of packets from Host to Slave is initiated by the Host. The Slave receives data via DMA and stores it
in RAM. After transmission is completed, the CPU will be interrupted to process the data. The whole procedure is
demonstrated in Figure 8-7.

Host ; Slave
Obtains the number of available !
Slave buffers !

‘ Waits for enough Slave buffers
‘ Fills packet ‘

'

‘ Sends CMD53 ‘

Slave returns Response(R5)

. 4mwsical Bus data
‘ SDIO Physical Bus sends data —w DMA transfers data

' o

‘ END ‘ : ‘ Sends interrupt to CPU

‘ CPU processes data

Figure 8-7. Packet Receiving Procedure (Initiated by Host)

The Host obtains the number of available receiving buffers from the Slave by accessing register
SLCOHOST_TOKEN_RDATA. The Slave CPU should update this value after the receiving DMA linked list is
prepared.

HOSTREG_SLCO_TOKEN1 in SLCOHOST_TOKEN_RDATA stores the accumulated number of available
buffers.

The Host can figure out the available buffer space, using HOSTREG_SLCO_TOKEN1 minus the number of
buffers already used.

If the buffers are not enough, the Host needs to constantly poll the register until there are enough buffers
available.

To ensure sufficient receiving buffers, the Slave CPU must constantly load buffers on the receiving linked list. The
process is shown in Figure 8-8.

Espressif Systems 163 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

CPU loads available buffers
on Iinll<ed list

CPU notifies DMA of
refreshed linked list

CPU refreshes available buffers

Figure 8-8. Loading Receiving Buffer

The CPU first needs to append new buffer segments at the end of the linked list that is being used by DMA and is
available for receiving data.

The CPU then needs to notify the DMA that the linked list has been modified. This can be done by setting bit
SLCO_TXLINK_RESTART of the SLCOTX_LINK register. Please note that when the CPU initiates DMA to receive
packets for the first time, SLCO_TXLINK_RESTART should be set to 1.

Lastly, the CPU refreshes any available buffer information by writing to the SLCOTOKENT register.

8.3.6 SDIO Bus Timing

The SDIO bus operates at a very high speed and the PCB trace length usually affects signal integrity by
introducing latency. To ensure that the timing characteristics conform to the desired bus timing, the SDIO Slave
module supports configuration of input sampling clock edge and output driving clock edge.

When the incoming data changes near the rising edge of the clock, the Slave will perform sampling on the falling
edge of the clock, or vice versa, as Figure 8-9 shows.

Posedge sampling Negedge sampling

CLK CLK

CMD X X CMD X X
DAT[3:0] DAT[3:0]

Figure 8-9. Sampling Timing Diagram

By default, the MTDO strapping value determines the Slave’s sampling edge. However, users can decide the
sampling edge by configuring the SLCHOST_CONF_REG register, with priority from high to low: (1) Set
SLCHOST_FRC_POS_SAMP to sample the corresponding signal at the rising edge; (2) Set
SLCHOST_FRC_NEG_SAMP to sample the corresponding signal at the falling edge.

SLCHOST_FRC_POS_SAMP and SLCHOST_FRC_NEG_SAMP fields are five bits wide. The bits correspond to
the CMD line and four DATA lines (0-3). Setting a bit causes the corresponding line to be sampled for input at the
rising clock edge or falling clock edge.

Espressif Systems 164 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

The Slave can also select which edge to drive the output lines, in order to accommodate for any latency caused
by the physical signal path. The output timing is shown in Figure 8-10.

Posedge driving | | Posedge driving |

CLK CLK

CMD | | CMD
DATI[3:0] : : DATI[3:0]

Figure 8-10. Output Timing Diagram

By default, the GPIO5 strapping value determines the Slave’s output driving edge. However, users can decide
the output driving edge by configuring the following registers, with priority from high to low: (1) Set
SLCHOST_FRC_SDIO11 in SLCHOST_CONF_REG to output the corresponding signal at the falling clock edge;
(2) Set SLCHOST_FRC_SDIO22 in SLCHOST_CONF_REG to output the corresponding signal at the rising clock
edge; (3) Set HINF_HIGHSPEED_ENABLE in HINF_CFG_DATA1_REG and SLCHOST_HSPEED_CON_EN in
SLCHOST_CONF_REG, then set the EHS (Enable High-Speed) bit in CCCR at the Host side to output the
corresponding signal at the rising clock edge.

SLCHOST_FRC_SDIO11 and SLCHOST_FRC_SDIO22 fields are five bits wide. The bits correspond to the CMD
line and four DATA lines (0-3). Setting a bit causes the corresponding line to output at the rising clock edge or
falling clock edge.

Notes on priority setting: The configuration of strapping pins has the lowest priority when controlling the
sampling edge or driving edge. The lower-priority configuration takes effect only when the higher-priority
configuration is not set. For example, the MTDO strapping value determines the sampling edge only when
SCLHOST_FRC_POS_SAMP and SCLHOST_FRC_NEG_SAMP are not set.

8.3.7 Interrupt

Host and Slave can interrupt each other via the interrupt vector. Both Host and Slave have eight interrupt
vectors. The interrupt is enabled by configuring the interrupt vector register (setting the enable bit to 1). The
interrupt vector registers can clear themselves automatically, which means one interrupt at a time and no other
configuration is required.

8.3.7.1 Host Interrupt

SLCOHOST_SLCO_RX_NEW_PACKET_INT Slave has a packet to send.

SLCOHOST_SLCO_TX_OVF_INT Slave receiving buffer overflow interrupt.

SLCOHOST_SLCO_RX_UDF_INT Slave sending buffer underflow interrupt.

SLCOHOST_SLCO_TOHOST_BITn_INT (n: 0 ~ 7) Slave interrupts Host.

8.3.7.2 Slave Interrupt

e SLCOINT_SLCO_RX_DSCR_ERR_INT Slave sending descriptor error.

o SILCOINT_SLCO_TX_DSCR_ERR_INT Slave receiving descriptor error.

Espressif Systems 165 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

SDIO Slave Controller

e SLCOINT_SLCO_RX_EOF_INT Slave sending operation is finished.

e SLCOINT_SLCO_RX_DONE_INT A single buffer is sent by Slave.

o SLCOINT_SLCO_TX_SUC_EOF_INT Slave receiving operation is finished.

e SLCOINT_SLCO_TX_DONE_INT A single buffer is finished during receiving operation.

o SLCOINT_SLCO_TX_OVF_INT Slave receiving buffer overflow interrupt.

o SLCOINT_SLCO_RX_UDF_INT Slave sending buffer underflow interrupt.

e SLCOINT_SLCO_TX_START_INT Slave receiving interrupt initialization.

o SLCOINT_SLCO_RX_START_INT Slave sending interrupt initialization.

e SLCOINT_SLC_FRHOST_BITn_INT (n: O ~ 7) Host interrupts Slave.

8.4 Register Summary

Name ‘ Description Address Access
SDIO DMA (SLC) configuration registers
SLCCONFO_REG SLCCONFOQ_SLC configuration Ox3FF58000 | R/W
SLCORX_LINK_REG Transmitting linked list configuration Ox3FF5803C | R/W
SLCOTX_LINK_REG Receiving linked list configuration Ox3FF58040 | R/W
SLCINTVEC_TOHOST_REG Interrupt sector for Slave to interrupt Host Ox3FF5804C | WO
SLCOTOKEN1_REG Number of receiving buffer Ox3FF58054 | WO
SLCCONF1_REG Control register Ox3FF58060 | R/W
SLC_RX_DSCR_CONF_REG DMA transmission configuration Ox3FF58098 | R/W
SLCO_LEN_CONF_REG Length control of the transmitting packets Ox3FF580E4 | R/W
SLCO_LENGTH_REG Length of the transmitting packets Ox3FF580E8 | R/W
Interrupt Registers
SLCOINT_RAW_REG Raw interrupt status Ox3FF58004 | RO
SLCOINT_ST_REG Interrupt status Ox3FF58008 | RO
SLCOINT_ENA_REG Interrupt enable Ox3FF5800C | R/W
SLCOINT_CLR_REG Interrupt clear Ox3FF58010 | WO
Name Description Address Access
SDIO SLC Host registers
SLCOHOST TOKEN_RDATA The accumulated number of Slave’s receiving Ox3FE55044 | RO
buffers
SLCHOST_PKT_LEN_REG Length of the transmitting packets Ox3FF55060 | RO
SLCHOST_CONF_WO_REG Host and Slave communication registerO Ox3FF5506C | R/W
SLCHOST_CONF_W1_REG Host and Slave communication register Ox3FF55070 | R/W
SLCHOST_CONF_W2_REG Host and Slave communication register2 Ox3FF55074 | R/W
SLCHOST_CONF_W3_REG Host and Slave communication register3 Ox3FF55078 | R/W
SLCHOST_CONF_W4_REG Host and Slave communication register4 Ox3FF5507C | R/W
SLCHOST_CONF_W6_REG Host and Slave communication register6 Ox3FF55088 | R/W
SLCHOST_CONF_W7_REG Interrupt vector for Host to interrupt Slave Ox3FF5508C | WO
SLCHOST_CONF_W8_REG Host and Slave communication register8 Ox3FF5509C | R/W

Espressif Systems

166

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

SLCHOST_CONF_W9_REG Host and Slave communication register9 Ox3FF550A0 | R/W
SLCHOST_CONF_W10_REG Host and Slave communication register10 Ox3FF550A4 | R/W
SLCHOST_CONF_W11_REG Host and Slave communication register11 Ox3FF550A8 | R/W
SLCHOST_CONF_W12_REG Host and Slave communication register12 Ox3FF550AC | R/W
SLCHOST_CONF_W13_REG Host and Slave communication register13 Ox3FF550B0 | R/W
SLCHOST_CONF_W14_REG Host and Slave communication register14 Ox3FF550B4 | R/W
SLCHOST_CONF_W15_REG Host and Slave communication register15 Ox3FF550B8 | R/W
SLCHOST_CONF_REG Edge configuration Ox3FF551F0 | R/W
Interrupt Registers

SLCOHOST_INT_RAW_REG Raw interrupt O0x3FF55000 | RO

SLCOHOST_INT_ST_REG Masked interrupt status Ox3FF55058 | RO

SLCOHOST_INT_CLR_REG Interrupt clear Ox3FF550D4 | WO
SLCOHOST_FUNC1_INT_ENA_REG Interrupt enable Ox3FF550DC | R/W
Name ‘ Description ‘ Address ‘ Access

SDIO HINF registers

HINF_CFG_DATA1_REG

‘ SDIO specification configuration

| Ox3FF4B004 | R/W

Espressif Systems

167

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

8.5 SLC Registers

The addresses in parenthesis besides register names are the register addresses relative to the SDIO Slave base
address (0x3FF5_8000) provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The
absolute register addresses are listed in Section 8.4 Register Summary.

Register 8.1. SLCCONFO0_REG (0x0)

> Q“T
o YA
& L&
P 0/ LR
& P L&
<0 GO o
Q7 Q7 Q7 Q7 Q7 Q7
Q7 Q7¢Q7¢Q7 Q7¢Q7
D & > SLEE 5 LK
& Ry & PP 57 PP
& & & ey & ooy
‘31 15| 14 |13 7 6 5 4 3 2 1 0‘
\00000000000000000100000000110ooo\Rese»c

SLCCONFO0_SLCO_TOKEN_AUTO_CLR Please initialize to 0. Do not modify it. (R/W)

SLCCONFO0_SLCO0_RX_AUTO_WRBACK Allows changing the owner bit of the transmitting buffer’s
linked list when transmitting data. (R/W)

SLCCONFO0_SLCO_RX_LOOP_TEST Loop around when the slave buffer finishes sending packets.
When set to 1, hardware will not change the owner bit in the linked list. (R/W)

SLCCONFO0_SLCO_TX_LOOP_TEST Loop around when the slave buffer finishes receiving packets.
When set to 1, hardware will not change the owner bit in the linked list. (R/W)

SLCCONFO_SLCO_RX_RST Set this bit to reset the transmitting FSM. (R/W)

SLCCONFO_SLCO_TX_RST Set this bit to reset the receiving FSM. (R/W)

Espressif Systems 168 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.2. SLCOINT_RAW_REG (0x4)

\ 0x00 |o 0 0 0 O o|o|o|o|o|o|o

SLCOINT_SLCO_RX_DSCR_ERR_INT_RAW The raw interrupt bit for Slave sending descriptor error
(RO)

SLCOINT_SLCO_TX_DSCR_ERR_INT_RAW The raw interrupt bit for Slave receiving descriptor error.
(RO)

SLCOINT_SLCO_RX_EOF_INT_RAW The interrupt mark bit for Slave sending operation finished.
(RO)

SLCOINT_SLCO_RX_DONE_INT_RAW The raw interrupt bit to mark single buffer as sent by Slave.
(RO)

SLCOINT_SLCO_TX_SUC_EOF_INT_RAW The raw interrupt bit to mark Slave receiving operation as
finished. (RO)

SLCOINT_SLCO_TX_DONE_INT_RAW The raw interrupt bit to mark a single buffer as finished during
Slave receiving operation. (RO)

SLCOINT_SLCO_TX_OVF_INT_RAW The raw interrupt bit to mark Slave receiving buffer overflow.
(RO)

SLCOINT_SLCO_RX_UDF_INT_RAW The raw interrupt bit for Slave sending buffer underflow. (RO)

SLCOINT_SLCO_TX_START_INT_RAW The raw interrupt bit for registering Slave receiving initializa-
tion interrupt. (RO)

SLCOINT_SLCO_RX_START_INT_RAW The raw interrupt bit to mark Slave sending initialization in-
terrupt. (RO)

SLCOINT_SLC_FRHOST_BIT7_INT_RAW The interrupt mark bit 7 for Host to interrupt Slave. (RO)
SLCOINT_SLC_FRHOST_BIT6_INT_RAW The interrupt mark bit 6 for Host to interrupt Slave. (RO)
SLCOINT_SLC_FRHOST_BIT5_INT_RAW The interrupt mark bit 5 for Host to interrupt Slave. (RO)
SLCOINT_SLC_FRHOST_BIT4_INT_RAW The interrupt mark bit 4 for Host to interrupt Slave. (RO)
SLCOINT_SLC_FRHOST_BIT3_INT_RAW The interrupt mark bit 3 for Host to interrupt Slave. (RO)
SLCOINT_SLC_FRHOST_BIT2_INT_RAW The interrupt mark bit 2 for Host to interrupt Slave. (RO)
SLCOINT_SLC_FRHOST_BIT1_INT_RAW The interrupt mark bit 1 for Host to interrupt Slave. (RO)
SLCOINT_SLC_FRHOST_BITO_INT_RAW The interrupt mark bit O for Host to interrupt Slave. (RO)

Espressif Systems 169 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.3. SLCOINT_ST_REG (0x8)

[ofofofefrfe]s]«]s]2]
\ 0x00 |o 0 0 0 O o|o|o|o|o|o|o|o|o o|o|o|o|0|o|o|o|o|o|o|

SLCOINT_SLCO_RX_DSCR_ERR_INT_ST The interrupt status bit for Slave sending descriptor error.

(RO)

SLCOINT_SLCO_TX_DSCR_ERR_INT_ST The interrupt status bit for Slave receiving descriptor error.

(RO)

SLCOINT_SLCO_RX_EOF_INT_ST The interrupt status bit for finished Slave sending operation. (RO)

SLCOINT_SLCO_RX_DONE_INT_ST The interrupt status bit for finished Slave sending operation.

(RO)

SLCOINT_SLCO_TX_SUC_EOF_INT_ST The interrupt status bit for marking Slave receiving opera-

tion as finished. (RO)

SLCOINT_SLCO_TX_DONE_INT_ST The interrupt status bit for marking a single buffer as finished

during the receiving operation. (RO)

SLCOINT_SLCO_TX_OVF_INT_ST The interrupt status bit for Slave receiving overflow interrupt. (RO)

SLCOINT_SLCO_RX_UDF_INT_ST The interrupt status bit for Slave sending buffer underflow. (RO)

SLCOINT_SLCO_TX_START_INT_ST The interrupt status bit for Slave receiving interrupt initialization.

(RO)

SLCOINT_SLCO_RX_START_INT_ST The interrupt status bit for Slave sending interrupt initialization.

(RO)
SLCOINT_SLC_FRHOST_BIT7_INT_ST
SLCOINT_SLC_FRHOST_BIT6_INT_ST
SLCOINT_SLC_FRHOST_BIT5_INT_ST
SLCOINT_SLC_FRHOST_BIT4_INT_ST
SLCOINT_SLC_FRHOST_BIT3_INT_ST
SLCOINT_SLC_FRHOST_BIT2_INT_ST
SLCOINT_SLC_FRHOST_BIT1_INT_ST

SLCOINT_SLC_FRHOST_BITO_INT_ST

Espressif Systems

The interrupt status bit 7 for Host to interrupt Slave.
The interrupt status bit 6 for Host to interrupt Slave.
The interrupt status bit 5 for Host to interrupt Slave.
The interrupt status bit 4 for Host to interrupt Slave.
The interrupt status bit 3 for Host to interrupt Slave.
The interrupt status bit 2 for Host to interrupt Slave.
The interrupt status bit 1 for Host to interrupt Slave.

The interrupt status bit O for Host to interrupt Slave.

(RO)
(RO)
(RO)
(RO)
(RO)
(RO)
(RO)

(RO)

170 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.4. SLCOINT_ENA_REG (0xC)

0x00 |o 0 0 0 O o|o|o|o|o|o|o|o|o o|o|o|o|o|0|o|o|o|o|0|o|o\Reset

SLCOINT_SLCO_RX_DSCR_ERR_INT_ENA The interrupt enable bit for Slave sending linked list de-

scriptor error. (R/W)

SLCOINT_SLCO_TX_DSCR_ERR_INT_ENA The interrupt enable bit for Slave receiving linked list de-

scriptor error. (R/W)

SLCOINT_SLCO_RX_EOF_INT_ENA The interrupt enable bit for Slave sending operation completion.

(R/W)

SLCOINT_SLCO_RX_DONE_INT_ENA The interrupt enable bit for single buffer’s sent interrupt, in
Slave sending mode. (R/W)

SLCOINT_SLCO_TX_SUC_EOF_INT_ENA The interrupt enable bit for Slave receiving operation com-

pletion. (R/W)

SLCOINT_SLCO_TX_DONE_INT_ENA The interrupt enable bit for single buffer’s full event, in Slave

receiving mode. (R/W)

SLCOINT_SLCO_TX_OVF_INT_ENA The interrupt enable bit for Slave receiving buffer overflow. (R/W)

SLCOINT_SLCO_RX_UDF_INT_ENA The interrupt enable bit for Slave sending buffer underflow.

(R/W)

SLCOINT_SLCO_TX_START_INT_ENA The interrupt enable bit for Slave receiving operation initial-

ization. (R/W)

SLCOINT_SLCO_RX_START_INT_ENA The interrupt enable bit for Slave sending operation initializa-

tion. (R/W)

SLCOINT_SLC_FRHOST_BIT7_INT_ENA The interrupt enable bit 7 for Host to interrupt Slave. (R/W)

SLCOINT_SLC_FRHOST_BIT6_INT_ENA The interrupt enable bit 6 for Host to interrupt Slave. (R/W)

SLCOINT_SLC_FRHOST_BIT5_INT_ENA The interrupt enable bit 5 for Host to interrupt Slave. (R/W)

SLCOINT_SLC_FRHOST_BIT4_INT_ENA The interrupt enable bit 4 for Host to interrupt Slave. (R/W)

SLCOINT_SLC_FRHOST_BIT3_INT_ENA The interrupt enable bit 3 for Host to interrupt Slave. (R/W)

SLCOINT_SLC_FRHOST_BIT2_INT_ENA The interrupt enable bit 2 for Host to interrupt Slave. (R/W)

SLCOINT_SLC_FRHOST_BIT1_INT_ENA The interrupt enable bit 1 for Host to interrupt Slave. (R/W)

EspreSiGO)NELSH-C_FRHOST_BITO_INT_ENA The infgrrupt enable bit O for Host to integrps $iang (\Brdion 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.5. SLCOINT_CLR_REG (0x10)

<
ooy & SRS I A S o
é\ /%/\ C/) & 3 /\C/}/& Lol 3 \@\/\S}//\C/}//\C/}//\C,}//\C,}//\C,}//\C,}//\C,}/
P 7SO NERVSISSSSSSS
8 S585 SESOLELEELRE
&'& ST SOEEL ?
(-0(.00 OO\)OO AQQ&V/\Vé\/é\/é\/é\/é\/é\/é\/é\/
9 L9329 SO SSESEEES
T TS FILTELLLLLLEL
& S SRR RO A AR AR
i ~ >SS 5 &W&W&W&W&W&W&W&@V&W&W&W&W
S S AN DN SR AR AN AR AN NN K
N N Yo oooy ¢ ey
\ 0x00 ooooooooooooooooooooooooooo\Reset
SLCOINT_SLCO_RX_DSCR_ERR_INT_CLR Interrupt clear bit for Slave sending linked list descriptor
error. (WO)
SLCOINT_SLCO_TX_DSCR_ERR_INT_CLR Interrupt clear bit for Slave receiving linked list descriptor
error. (WO)
SLCOINT_SLCO_RX_EOF_INT_CLR Interrupt clear bit for Slave sending operation completion. (WO)
SLCOINT_SLCO_RX_DONE_INT_CLR Interrupt clear bit for single buffer’s sent interrupt, in Slave
sending mode. (WO)
SLCOINT_SLCO_TX_SUC_EOF_INT_CLR Interrupt clear bit for Slave receiving operation comple-
tion. (WQO)
SLCOINT_SLCO_TX_DONE_INT_CLR Interrupt clear bit for single buffer’s full event, in Slave receiving
mode. (WO)
SLCOINT_SLCO_TX_OVF_INT_CLR Set this bit to clear the Slave receiving overflow interrupt. (WO)
SLCOINT_SLCO_RX_UDF_INT_CLR Set this bit to clear the Slave sending underflow interrupt. (WO)
SLCOINT_SLCO_TX_START_INT_CLR Set this bit to clear the interrupt for Slave receiving operation
initialization. (WO)
SLCOINT_SLCO_RX_START_INT_CLR Set this bit to clear the interrupt for Slave sending operation
initialization. (WO)
SLCOINT_SLC_FRHOST_BIT7_INT_CLR Set this bit to clear the SLCOINT_SLC_FRHOST_BIT7_INT
interrupt. (WO)
SLCOINT_SLC_FRHOST_BIT6_INT_CLR Set this bit to clear the SLCOINT_SLC_FRHOST_BIT6_INT
interrupt. (WO)
SLCOINT_SLC_FRHOST_BIT5_INT_CLR Set this bit to clear the SLCOINT_SLC_FRHOST_BIT5_INT
interrupt. (WO)
SLCOINT_SLC_FRHOST_BIT4_INT_CLR Set this bit to clear the SLCOINT_SLC_FRHOST_BIT4_INT
interrupt. (WO)
Continued on the next page...
Espressif Systems 172 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.5. SLCOINT_CLR_REG (0x10)

Continued from the previous page...

SLCOINT_SLC_FRHOST_BIT3_INT_CLR Set this bit to clear SLCOINT_SLC_FRHOST_BIT3_INT in-
terrupt. (WO)

SLCOINT_SLC_FRHOST_BIT2_INT_CLR Set this bit to clear SLCOINT_SLC_FRHOST_BIT2_INT in-
terrupt. (WO)

SLCOINT_SLC_FRHOST_BIT1_INT_CLR Set this bit to clear SLCOINT_SLC_FRHOST_BIT1_INT in-
terrupt. (WO)

SLCOINT_SLC_FRHOST_BITO_INT_CLR Set this bit to clear SLCOINT_SLC_FRHOST_BITO_INT in-

terrupt. (WO)
Register 8.6. SLCORX_LINK_REG (0x3C)
<
Q\
&N Q0 Q&
O &
S Sl
Q/+Q/+Q/+ Qg-\\‘
N o
Q&Qt\./Qt_/Qz\‘/ Q)& Qi_/
EXORORE & oX
E oo s & N
‘31|30|29|28|27 20|19 0‘
\o|o|o|o|o 0 000 0 O o| 0x000000 \Reset

SLCORX_SLCO_RXLINK_RESTART Set this bit to restart and continue the linked list operation for
sending packets. (R/W)

SLCORX_SLCO_RXLINK_START Set this bit to start the linked list operation for sending packets.
Sending will start from the address indicated by SLCO_RXLINK_ADDR. (R/W)

SLCORX_SLCO_RXLINK_STOP Set this bit to stop the linked list operation. (R/W)

SLCORX_SLCO_RXLINK_ADDR The lowest 20 bits in the initial address of Slave’s sending linked list.
R/W)

Espressif Systems 173 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.7. SLCOTX_LINK_REG (0x40)

4
¥ &R S
Eee ©
S P
7/ 7/ 7/
S5 K
®<_//<_//<_/ Q)b\ ,(_/
& P PP 5 ¥

N N >
‘31|30|29|28|27 20|19 0‘
\ 0 | 0 | 0 | 0 |o 0 000 0 O o| 0x000000 \Reset

SLCOTX_SLCO_TXLINK_RESTART Set this bit to restart and continue the linked list operation for
receiving packets. (R/W)

SLCOTX_SLCO_TXLINK_START Set this bit to start the linked list operation for receiving packets.
Receiving will start from the address indicated by SLCO_TXLINK_ADDR. (R/W)

SLCOTX_SLCO_TXLINK_STOP Set this bit to stop the linked list operation for receiving packets.

R/W)
SLCOTX_SLCO_TXLINK_ADDR The lowest 20 bits in the initial address of Slave’s receiving linked
list. (R/W)
Register 8.8. SLCINTVEC_TOHOST_REG (0x4C)
&
é*
A/
P
NS
<O
Q7
N
S > N &’
Q& Q Q
%) Q)(\\ ‘2){A \é
S 2 S O
N N N &
\ 0x000 0 000 00 0 O 0x000 0x000 \Reset
SLCINTVEC_SLCO_TOHOST_INTVEC The interrupt vector for Slave to interrupt Host. (WO)
Espressif Systems 174 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.9. SLCOTOKEN1_REG (0x54)

&
o S
N ’\>$ ’\/$O
S S S
/\O{_ /\O% /\O{_
7 Q7 Qs
O O @)
4 5 N
N S N
Q,é\ O{g/ Qlé\ O\EQ/ Q)é\ O\EQ/
& OQ’\ & 06\ & Og/\
& Y NZE= N =
‘ 31 28 | 27 16 | 15 14 | 13 12 | 11 0 ‘
\ 0x00 | 0x0000 | 0 | 0 | 0 o | 0x0000 \Reset

SLCOTOKEN1_SLCO_TOKEN1 The accumulated number of buffers for receiving packets. (RO)

SLCOTOKEN1_SLCO_TOKEN1_INC_MORE Set this bit to add the wvalue of
SLCOTOKEN1_SLCO_TOKEN1_WDATA to that of SLCOTOKEN1_SLCO_TOKEN1. (WO)

SLCOTOKEN1_SLCO_TOKEN1_WDATA The number of available receiving buffers. (WO)

Register 8.10. SLCCONF1_REG (0x60)

S o
Q&
/\Qx\/ox\\/g\o

DO

A
%\/QQ\/QQ\/OQ
S S S L
Q;‘AQ) Q;’\@ Q,‘@ OOOiOOiC)Oé
& ¢ ¢ S &

’31 23|22 16|15 7|6|5|4‘

] 0x000 |ooooooo|ooooooooo|1|1|1\Reset
SLCCONF1_SLCO_RX_STITCH_EN Please initialize to 0. Do not modify it. (R/W)
SLCCONF1_SLCO_TX_STITCH_EN Please initialize to 0. Do not modify it. (R/W)
SLCCONF1_SLCO_LEN_AUTO_CLR Please initialize to 0. Do not modify it. (R/W)

Espressif Systems 175 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.11. SLC_RX_DSCR_CONF_REG (0x98)

| o

o]
\ooooooooooooooooooooooooooooooo|o\Reset

SLC_SLCO_TOKEN_NO_REPLACE Please initialize to 1. Do not modify it. (R/W)

Register 8.12. SLCO_LEN_CONF_REG (0xE4)

<
& s
& <l
Q)® Q)b\ \(5/%/ Q)b\ §/

Q;%Q}\\ Q?Q)Q\ \96/ Q?‘QF\ &Q/

A A) £ S
‘31 29|28 23|22|21 20|19 0‘
\ 0x0 |o 0 0 0 O o| 0 |o o| 0x000000 \Reset

SLCO_LEN_INC_MORE Set this bit to add the value of SLCO_LEN to that of SLCO_LEN_WDATA.
(WO)

SLCO_LEN_WDATA The packet length sent. (WO)

Register 8.13. SLCO_LENGTH_REG (OXES)

S S
© s
& X4
N oY
‘ 31 20| 19 0 ‘
\ 0x0000 0x000000 \ Reset

SLCO_LEN Indicates the packet length sent by the Slave. (RO)

8.6 SLC Host Registers

The addresses in parenthesis besides register names are the register addresses relative to the SDIO Slave base
address (0x3FF5_5000) provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The
absolute register addresses are listed in Section 8.4 Register Summary.

Espressif Systems 176 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.14. SLCOHOST_TOKEN_RDATA (0x44)

S
O\J‘“
Q /
NS
) &7 >
@GQJ é\Q\ Q)ég
o 3 o5
N S @

‘ 31 28 | 27 16 | 15 0 ‘
\ 0x000 0x000 0X000 \ Reset

HOSTREG_SLCO_TOKEN1 The accumulated number of Slave’s receiving buffers. (RO)

Espressif Systems 177 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.15. SLCOHOST_INT_RAW_REG (0x50)

N
&
g ENIENINICNIKNIRNIIG RN
$ RNARRARN
&’ S SRS
) ‘?/\% Q707 L7 & Q7 QI Q7
X S 2322938333
4 £ CEEEEEEE
& o O Q0 Q0 Q0 Q0
Y4 Q7 Q7 Q7 Q7 Q7 Q7 Q7 O 7 O
& > & Y S S Y S
& A S A S ¢ FELLELLLE
& & O & OO & OO T OO0
N ¢ o N >’ & N Y S Y
\ 0x00 oooooooooooooooooooooooooo\Reset
SLCOHOST_SLCO_RX_NEW_PACKET_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_RX_NEW_PACKET_INT interrupt. (RO)
SLCOHOST_SLCO_TX_OVF_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TX_OVF_INT interrupt. (RO)
SLCOHOST_SLCO_RX_UDF_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_RX_UDF_INT interrupt. (RO)
SLCOHOST_SLCO_TOHOST_BIT7_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT7_INT interrupt. (RO)
SLCOHOST_SLCO_TOHOST_BIT6_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT6_INT interrupt. (RO)
SLCOHOST_SLCO_TOHOST_BIT5_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT5_INT interrupt. (RO)
SLCOHOST_SLCO_TOHOST_BIT4_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT4_INT interrupt. (RO)
SLCOHOST_SLCO_TOHOST_BIT3_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT3_INT interrupt. (RO)
SLCOHOST_SLCO_TOHOST_BIT2_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT2_INT interrupt. (RO)
SLCOHOST_SLCO_TOHOST_BIT1_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT1_INT interrupt. (RO)
SLCOHOST_SLCO_TOHOST_BITO_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BITO_INT interrupt. (RO)
Espressif Systems 178 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.16. SLCOHOST_INT_ST_REG (0x58)

&
N7 NN AN AN AN AN A
s SE888888
N7
12 56 SSSSSESSS
O N of W & o NQ
“7 QSIS
& $'s 2,202,299 949
<§ R N NN N SN NN
§ 3 FEELFEFS
& & QL0080 .0
/ / / / / / / / / / /
& e S SE
&’ o & oYYV
/i AN AR IR
> > & > F& > FEFSEEELEELS
%))))
5 s S 5 & 5 FEFFTSSSTS
ch) @@‘2’ O (g? O O @éb OO0 000000
& N & o & & oYY
‘31 26 | 25 24| 23 |22 18 | 17 16 | 15 8 7 6 5 4 3 2 1 0 ‘
\ 0x00 oooooo0ooooooooooooooooooo\Reset

SLCOHOST_SLCO_RX_NEW_PACKET_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_RX_NEW_PACKET_INT interrupt. (RO)

SLCOHOST_SLCO_TX_OVF_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TX_OVF_INT interrupt. (RO)

SLCOHOST_SLCO_RX_UDF_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_RX_UDF_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT7_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT7_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT6_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT6_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT5_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT5_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT4_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT4_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT3_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT3_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT2_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT2_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT1_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT1_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BITO_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BITO_INT interrupt. (RO)

Espressif Systems 179 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.17. SLCHOST_PKT_LEN_REG (0x60)

\k
O
&
S &
o7 o7
@VQ @\9
&7 &7
/\& /\Q\({’
S S
O O
NS NS
A/ A7
S S
L L
e ®
&’ &7
‘ 31 20 | 19 0 ‘
‘ 0x000 | 0X000 \ Reset

SLCHOST_HOSTREG_SLCO_LEN_CHECK Its value is HOSTREG_SLCO_LEN[9:0] plus
HOSTREG_SLCO_LEN[19:10]. (RO)

SLCHOST_HOSTREG_SLCO_LEN The accumulated value of the data length sent by the Slave. The
value gets updated only when the Host reads it.

Register 8.18. SLCHOST_CONF_WO0_REG (0x6C)

) a9 N o
o ooé< QO\A<< ooé<
%'\ J é& 7 6& 7 %’K s
C)\2\0 O\z\O 0\2\0 0\2\0
& &7 & &
‘31 24|23 16|15 8|7 0‘
\ 0x000 | 0x000 | 0x000 | 0x000 \ Reset

SLCHOST_CONF3 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF2 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF1 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONFO The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

Espressif Systems 180 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.19. SLCHOST_CONF_W1_REG (0x70)

\ 0x000 0x000 0x000 0Xx000 \ Reset

SLCHOST_CONF7 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF6 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF5 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF4 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

Register 8.20. SLCHOST_CONF_W2_REG (0x74)

N Q
<<\ <<\ <<Cb <<‘b
Qoé QO% QO% o%
A7 A 7 A 7 A7
%) ©))
Q Q Q O
& & & &
>4 =>4 &7 =

‘ 31 24|23 16 | 15 8|7 0 ‘
\ 0x000 0x000 0x000 0X000 \ Reset

SLCHOST_CONF11 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF10 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF9 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF8 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

Espressif Systems 181 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.21. SLCHOST_CONF_W3_REG (0x78)

‘ 31 24 | 23 16 ‘

‘ 0x000 0x000 ‘ Reset

SLCHOST_CONF15 The information interaction register between Host and Slave. Both Host and
Slave can be read from and written to this. (R/W)

SLCHOST_CONF14 The information interaction register between Host and Slave. Both Host and
Slave can be read from and written to this. (R/W)

Register 8.22. SLCHOST_CONF_W4_REG (0x7C)

’\Q ’\(b
c)o((ooé<
&’ &’
N S
‘ 31 24 | 23 16 ‘
\ 0x000 | 0x000 |Reset

SLCHOST_CONF19 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF18 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 182 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.23. SLCHOST_CONF_W6_REG (0x88)

‘31 24|23 16 | 15 8|7 0‘

\ 0x000 0x000 0x000 0Xx000 \ Reset

SLCHOST_CONF27 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF26 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF25 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF24 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.24. SLCHOST_CONF_W7_REG (0x8C)

({b\ <<Q?)
> >
O O
£ D $7 D
0\2\ ‘-o@é C)\?\ G_’Q)«A
&’ N &’ N
‘31 24123 16 | 15 8|7 0‘
\o 0 0 00 0 0 O 0x000 0 000 00 0 O 0x000 \Reset

SLCHOST_CONF31 The interrupt vector used by Host to interrupt Slave. This bit will not be cleared
automatically. (WO)

SLCHOST_CONF29 The interrupt vector used by Host to interrupt Slave. This bit will not be cleared
automatically. (WO)

Espressif Systems 183 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.25. SLCHOST_CONF_W8_REG (0x9C)

‘31 24|23 16 | 15 8|7 0‘

\ 0x000 0x000 0x000 0Xx000 \ Reset

SLCHOST_CONF35 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF34 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF33 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF32 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.26. SLCHOST_CONF_W9_REG (0xA0)

({bo" ({b(b <<Q/J\ ({b@
> > > >
O O O O
A 7 N2 A 7 A/
%) (%)) %)
\2\0 \Z\O Q\O \2\0
@) O O O
=X =4 =X &7
‘ 31 24123 16 | 15 8|7 0 ‘
\ 0x000 0x000 0x000 0x000 \ Reset

SLCHOST_CONF39 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF38 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF37 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF36 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 184 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.27. SLCHOST_CONF_W10_REG (0xA4)

‘31 24|23 16 | 15 8|7 0‘

\ 0x000 0x000 0x000 0Xx000 \ Reset

SLCHOST_CONF43 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF42 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF41 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF40 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.28. SLCHOST_CONF_W11_REG (0xA8)

A © » >
%Qb(&V %Qb(%Qb‘
X oX fox X
A 7 A 7/ A 7 %
%) (%))
\2\0 Q\O Q\O \2\0
@) O O O
=24 & >4 =>4
‘ 31 24123 16 | 15 8|7 0 ‘
\ 0x000 0x000 0x000 0x000 \ Reset

SLCHOST_CONF47 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF46 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF45 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF44 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 185 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.29. SLCHOST_CONF_W12_REG (0xAC)

‘31 24|23 16 | 15 8|7 0‘

\ 0x000 0x000 0x000 0Xx000 \ Reset

SLCHOST_CONF51 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF50 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF49 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF48 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.30. SLCHOST_CONF_W13_REG (0xB0)

& & & &
> > > >
O O O O
A 7 A 7/ A 7 %
%) (%))
\2\0 Q\O Q\O \2\0
@) O O O
=24 & >4 =>4
‘ 31 24123 16 | 15 8|7 0 ‘
\ 0x000 0x000 0x000 0x000 \ Reset

SLCHOST_CONF55 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF54 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF53 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF52 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 186 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.31. SLCHOST_CONF_W14_REG (0xB4)

‘31 24|23 16 | 15 8|7 0‘

\ 0x000 0x000 0x000 0Xx000 \ Reset

SLCHOST_CONF59 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF58 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF57 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF56 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.32. SLCHOST_CONF_W15_REG (0xB8)

0 Q N Q
égo ég) &@ ég)
X oX fox X
A 7 A 7 A 7/ A/
%) (%)) %)
\2\0 Q\O Q\O \2\0
@) O O O
=24 & >4 =>4
‘ 31 24123 16 | 15 8|7 0 ‘
\ 0x000 0x000 0x000 0x000 \ Reset

SLCHOST_CONF63 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF62 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF61 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF60 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 187 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.33. SLCOHOST_INT_CLR_REG (0xD4)

AN
S S L S
® > & 8
3 5 S 3
o g O 3

\ 0x00 oooooooooooooooooooooooooo\Reset

SLCOHOST_SLCO_RX_NEW_PACKET_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_RX_NEW_PACKET_INT interrupt. (WO)

SLCOHOST_SLCO_TX_OVF_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TX_OVF_INT in-
terrupt. (WO)

SLCOHOST_SLCO_RX_UDF_INT_CLR Set this bit to clear the SLCOHOST_SLCO_RX_UDF_INT in-
terrupt. (WO)

SLCOHOST_SLCO_TOHOST_BIT7_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_TOHOST_BIT7_INT interrupt. (WO)

SLCOHOST_SLCO_TOHOST_BIT6_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_TOHOST_BIT6_INT interrupt. (WO)

SLCOHOST_SLCO_TOHOST_BIT5_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_TOHOST_BIT5_INT interrupt. (WO)

SLCOHOST_SLCO_TOHOST_BIT4_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_TOHOST_BIT4_INT interrupt. (WO)

SLCOHOST_SLCO_TOHOST_BIT3_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_TOHOST_BIT3_INT interrupt. (WO)

SLCOHOST_SLCO_TOHOST_BIT2_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_TOHOST_BIT2_INT interrupt. (WO)

SLCOHOST_SLCO_TOHOST_BIT1_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_TOHOST_BIT1_INT interrupt. (WO)

SLCOHOST_SLCO_TOHOST_BITO_INT_CLR Set this bit to clear the
SLCOHOST_SLCO_TOHOST_BITO_INT interrupt. (WO)

Espressif Systems 188 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.34. SLCOHOST_FUNC1_INT_ENA_REG (0xDC)

26|25 24|23|22

[]

\ 0x00 |o o|o

oooo|o|o|ooooooo

SLCOHOST_FN1_SLCO_RX_NEW_PACKET_INT_ENA The

SLCOHOST_FN1_SLCO_RX_NEW_PACKET_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TX_OVF_INT_ENA The
SLCOHOST_FN1_SLCO_TX_OVF_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_RX_UDF_INT_ENA The
SLCOHOST_FN1_SLCO_RX_UDF_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST_BIT7_INT_ENA The
SLCOHOST_FN1_SLCO_TOHOST_BIT7_INT interrupt.

SLCOHOST_FN1_SLCO_TOHOST_BIT6_INT_ENA The
SLCOHOST_FN1_SLCO_TOHOST_BIT6_INT interrupt.

SLCOHOST_FN1_SLCO_TOHOST_BIT5_INT_ENA The
SLCOHOST_FN1_SLCO_TOHOST_BIT5_INT interrupt.

SLCOHOST_FN1_SLCO_TOHOST_BIT4_INT_ENA The
SLCOHOST_FN1_SLCO_TOHOST_BIT4_INT interrupt.

SLCOHOST_FN1_SLCO_TOHOST_BIT3_INT_ENA The
SLCOHOST_FN1_SLCO_TOHOST_BIT3_INT interrupt.

SLCOHOST_FN1_SLCO_TOHOST_BIT2_INT_ENA The
SLCOHOST_FN1_SLCO_TOHOST_BIT2_INT interrupt.

SLCOHOST_FN1_SLCO_TOHOST_BIT1_INT_ENA The
SLCOHOST_FN1_SLCO_TOHOST_BIT1_INT interrupt.

SLCOHOST_FN1_SLCO_TOHOST_BITO_INT_ENA The
SLCOHOST_FN1_SLCO_TOHOST_BITO_INT interrupt.

Espressif Systems 189

interrupt

interrupt

interrupt
(R/W)

interrupt
(R/W)

interrupt
(R/W)

interrupt
(R/W)

interrupt
(R/W)

interrupt
(R/W)

interrupt
(R'W)

interrupt
(R/W)

Submit Documentation Feedback

interrupt

enable
enable bit
enable bit
enable bit
enable bit
enable Dbit
enable Dbit
enable Dbit
enable Dbit
enable bit
enable bit

bit

for

for

for

for

for

for

for

for

for

for

for

the

the

the

the

the

the

the

the

the

the

the

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

8 SDIO Slave Controller

Register 8.35. SLCHOST_CONF_REG (0x1F0)

S Q Q
> » P .
S S
o7 & &’ o s
& o > Q?Q o7
3 Q& Q& & &
A7 A 7 A7 &7 A7
& & I & & & &
& O f S S S S
NS &7 NS &7 &’ &’ &7

SLCHOST_HSPEED_CON_EN Set this bit and HINF_HIGHSPEED_ENABLE, then set the EHS (En-
able High-Speed) bit in CCCR at the Host side to output the corresponding signal at the rising
clock edge. (R/W)

SLCHOST_FRC_POS_SAMP Set this bit to sample the corresponding signal at the rising clock edge.
RW)

SLCHOST_FRC_NEG_SAMP Set this bit to sample the corresponding signal at the falling clock edge.
RW)

SLCHOST_FRC_SDIO20 Set this bit to output the corresponding signal at the rising clock edge.
RW)

SLCHOST_FRC_SDIO11 Set this bit to output the corresponding signal at the falling clock edge.
(RW)

8.7 HINF Registers

The addresses in parenthesis besides register names are the register addresses relative to the SDIO Slave base
address (0x3FF4_B000) provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The
absolute register addresses are listed in Section 8.4 Register Summary.

Register 8.36. HINF_CFG_DATA1_REG (0x4)

<
&
NS
e
LYo
NSt
& P
o_,Q’ %Q/%((/
\J\Q \2\ N
E [2]]
\ooooooooooooooooooooooooooooo|o|o\Reset
HINF_HIGHSPEED_ENABLE Please initialize to 1. Do not modify it. (R/W)
HINF_SDIO_IOREADY1 Please initialize to 1. Do not modify it. (R/W)
Espressif Systems 190 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

9 SD/MMC Host Controller

9.1 Overview

The ESP32 memory card interface controller provides a hardware interface between the Advanced Peripheral Bus
(APB) and an external memory device. The memory card interface allows the ESP32 to be connected to SDIO
memory cards, MMC cards and devices with a CE-ATA interface. It supports two external cards (CardO and
Card?).

9.2 Features
This module has the following features:

* Two external cards

e Supports SD Memory Card standard: versions 3.0 and 3.01
e Supports MMC: versions 4.41, 4.5, and 4.51

e Supports CE-ATA: version 1.1

e Supports 1-bit, 4-bit, and 8-bit (Card0 only) modes

The SD/MMC controller topology is shown in Figure 9-1. The controller supports two peripherals which cannot be
functional at the same time.

Host
Controller

Data width 1/4/8 bits Data width 1/4 bits
SD Mem SD Mem
SDIO SDIO
EMMC EMMC
CE-ATA CE-ATA

Figure 9-1. SD/MMC Controller Topology

9.3 SD/MMC External Interface Signals

The primary external interface signals, which enable the SD/MMC controller to communicate with an external
device, are clock (clk), command (cmd) and data signals. Additional signals include the card interrupt, card detect,
and write-protect signals. The direction of each signal is shown in Figure 9-2. The direction and description of
each pin are listed in Table 9-1.

Espressif Systems 191 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

SDIO_HOST

SDIO_HOST
IF

cclk_out

ccmd_out

ccmd_in

cdata_in

cdata_out

card_int_n

card_detect_n

card_write_prt

SD/MMC core

External
SDIO
SLAVE

Figure 9-2. SD/MMC Controller External Interface Signals

Table 9-1. SD/MMC Signal Description

Pin Direction Description

cclk_out Output Clock signals for slave device
ccmd Duplex Duplex command/response lines
cdata Duplex Duplex data read/write lines
card_detect_n Input Card detection input line
card_write_prt Input Card write protection status input

9.4 Functional Description

9.4.1

SD/MMC Host Controller Architecture

The SD/MMC host controller consists of two main functional blocks, as shown in Figure 9-3:

¢ Bus Interface Unit (BIU): It provides APB interfaces for registers, data read and write operation by FIFO and

DMA.

e Card Interface Unit (CIU): It handles external memory card interface protocols. It also provides clock control.

Espressif Systems

BIU

Int
Ctrl

Card Detect
Power pull-up

Host
Interface
Unit

Register

DMA
Ctrl

Ram
Ctrl

3

=

Clu

Int Ctrl

Mux/
De-Mux

Data Path

Cmd Path

EMAG-CORE Rx/Tx Ram

o
=
X
Q

Input sample unit

Output hold unit

CLK

(=)

Figure 9-3. SDIO Host Block Diagram

192

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

9.4.1.1 BIU

The BIU provides the access to registers and FIFO data through the Host Interface Unit (HIU). Additionally, it provides
FIFO access to independent data through a DMA interface. The host interface can be configured as an APB
interface. Figure 9-3 illustrates the internal components of the BIU. The BIU provides the following functions:

® Host interface

DMA interface

Interrupt control

Register access

FIFO access

Power/pull-up control and card detection

9.41.2 CIU

The CIU module implements the card-specific protocols. Within the CIU, the command path control unit and
data path control unit prompt the controller to interface with the command and data ports, respectively, of the
SD/MMC/CE-ATA cards. The CIU also provides clock control. Figure 9-3 illustrates the internal structure of the
CIU, which consists of the following primary functional blocks:

e Command path

e Data path

e SDIO interrupt control
¢ Clock control

e Mux/demux unit

9.4.2 Command Path
The command path performs the following functions:

e Configures clock parameters

e Configures card command parameters

e Sends commands to card bus (ccmd_out line)

® Receives responses from card bus (ccmd_in line)
e Sends responses to BIU

* Drives the P-bit on the command line

The command path State Machine is shown in Figure 9-4.

Espressif Systems 193 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

9.4.3 Data Path

Command
Idle

response_expected=0

load_new_cmd tNCC done

Transmit

wait_tnnc
command -

Send IRQ
Response
equest

Response done/

response_expected=1 Response timeout

Receive
response

Figure 9-4. Command Path State Machine

The data path block pops FIFO data and transmits them on cdata_out during a write-data transfer, or it receives data
on cdata_in and pushes them into FIFO during a read-data transfer. The data path loads new data parameters, i.e.,
expected data, read/write data transfer, stream/block transfer, block size, byte count, card type, timeout registers,
etc., whenever a data transfer command is not in progress.

If the data_expected bit is set in the Command register, the new command is a data-transfer command and the

data path starts one of the following operations:

¢ Transmitting data if the read/write bit = 1

¢ Receiving data if read/write bit = 0

9.4.3.1

Data Transmit Operation

The data transmit state machine is illustrated in Figure 9-5. The module starts data transmission two clock cycles
after a response for the data-write command is received. This occurs even if the command path detects a response
error or a cyclic redundancy check (CRC) error in a response. If no response is received from the card until the
response timeout, no data are transmitted. Depending on the value of the transfer_mode bit in the Command
register, the data-transmit state machine adds data to the card’s data bus in a stream or in block(s). The data

transmit state machine is shown in Figure 9-5.

Espressif Systems

Tx Data
Idle

load_new_cmd and
data_expected

and write data and
Block transfer,

Stop data
command

Stop data load_new_cmd

command and
data_expected
and write data

and stream transfre

Byte count
remaining =0
or suspend/stop
data command

Rx
CRC status

Figure 9-5. Data Transmit State Machine

Byte count
Remaining != 0
Data not busy

Block done

194
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

9.4.3.2 Data Receive Operation

The data-receive state machine is illustrated in Figure 9-6. The module receives data two clock cycles after the end

bit of a data-read command, even if the command path detects a response error or a CRC error. If no response is

received from the card and a response timeout occurs, the BIU does not receive a signal about the completion of

the data transfer. If the command sent by the CIU is an illegal operation for the card, it would prevent the card from
starting a read-data transfer, and the BIU will not receive a signal about the completion of the data transfer.

If no data are received by the data timeout, the data path signals a data timeout to the BIU, which marks an end

to the data transfer. Based on the value of the transfer_mode bit in the Command register, the data-receive state
machine gets data from the card’s data bus in a stream or block(s). The data receive state machine is shown in

Figure 9-6.
oad and Tx Data
de
and read data and command
block transfer
Stop data load_new_cmd
command and
data_expected
and read data
and stream transfre Rx Data
stream
Byte count Byte count
Remaining != 0 remaining =0
or stop
data command
Block done
Figure 9-6. Data Receive State Machine
9.5 Software Restrictions for Proper CIU Operation

Only one card at a time can be selected to execute a command or data transfer. For example, when data are
being transferred to or from a card, a new command must not be issued to another card. A new command,
however, can be issued to the same card, allowing it to read the device status or stop the transfer.

Only one command at a time can be issued for data transfers.

During an open-ended card-write operation, if the card clock is stopped due to FIFO being empty, the
software must fill FIFO with data first, and then start the card clock. Only then can it issue a stop/abort
command to the card.

During an SDIO/COMBO card transfer, if the card function is suspended and the software wants to resume
the suspended transfer, it must first reset FIFO, and then issue the resume command as if it were a new
data-transfer command.

When issuing card reset commands (CMDO, CMD15 or CMD52_reset), while a card data transfer is in
progress, the software must set the stop_abort_cmd bit in the Command register, so that the CIU can
stop the data transfer after issuing the card reset command.

When the data’s end bit error is set in the RINTSTS register, the CIU does not guarantee SDIO interrupts. In
such a case, the software ignores SDIO interrupts and issues a stop/abort command to the card, so that
the card stops sending read-data.

If the card clock is stopped due to FIFO being full during a card read, the software will read at least two FIFO
locations to restart the card clock.

Espressif Systems 195 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

¢ Only one CE-ATA device at a time can be selected for a command or data transfer. For example, when data
are transferred from a CE-ATA device, a new command should not be sent to another CE-ATA device.

e |f a CE-ATA device’s interrupts are enabled (nIEN=0), a new RW_BLK command should not be sent to the
same device if the execution of a RW_BLK command is already in progress (the RW_BLK command used in
this databook is the RW_MULTIPLE_BLOCK MMC command defined by the CE-ATA specifications). Only
the CCSD can be sent while waiting for the CCS.

e [f, however, a CE-ATA device’s interrupts are disabled (NlEN=1), a new command can be issued to the same
device, allowing it to read status information.

e Open-ended transfers are not supported in CE-ATA devices.

e The send_auto_stop signal is not supported (software should not set the send_auto_stop bit) in CE-ATA
transfers.

After configuring the command start bit to 1, the values of the following registers cannot be changed before a
command has been issued:

¢ CMD - command

e CMDARG - command argument
e BYTCNT - byte count

e BLKSIZ - block size

e CLKDIV - clock divider

e CKLENA - clock enable

* CLKSRC - clock source

e TMOUT - timeout

e CTYPE - card type

9.6 RAM for Receiving and Sending Data

The submodule RAM is a buffer area for sending and receiving data. It can be divided into two units: the one is for
sending data, and the other is for receiving data. The process of sending and receiving data can also be achieved
by the CPU and DMA for reading and writing. The latter method is described in detail in Section 9.8.

9.6.1 Transmit RAM Module

There are two ways to enable a write operation: DMA and CPU read/write.

If SDIO-sending is enabled, data can be written to the transferred RAM module by APB interface or DMA. Data
will be written from register EMAC_FIFO to the CPU, directly, by an APB interface.

9.6.2 Receive RAM Module
There are two ways to enable a read operation: DMA and CPU read/write.

When a subunit of the data path receives data, the subdata will be written onto the receive-RAM. Then, these
subdata can be read either with the APB or the DMA method at the reading end. Register EMAC_FIFO can be
read by the APB directly.

Espressif Systems 196 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

9.7 Descriptor Chain

Each linked list module consists of two parts: the linked list itself and a data buffer. In other words, each mod-
ule points to a unique data buffer and the linked list that follows the module. Figure 9-7 shows the descriptor
chain.

Descriptor 0 Data Buffer

Descriptor 1 Data Buffer

t> Descriptor 2 Data Buffer

Figure 9-7. Descriptor Chain

9.8 The Structure of a Linked List

Each linked list consists of four words. As is shown below, Figure 9-8 demonstrates the linked list’s structure, and
Table 9-2, Table 9-3, Table 9-4, Table 9-5 provide the descriptions of linked lists.

31 30 5 4 3 2 10
RDESO | own|CES Reserved[29:6] ER| CH|FS |LD |DIC|RVD
RDESO Reserved Reserved Buffer 1 Size[12:0]
RDESO Buffer1 Address Pointer 1[31:0]
RDESO Next Descriptor Address[31:0]

Figure 9-8. The Structure of a Linked List

The DESO element contains control and status information.

Table 9-2. DESO

Bits Name Description

When set, this bit indicates that the descriptor is
owned by the DMAC. When reset, it indicates that the

31 OWN . .
descriptor is owned by the Host. The DMAC clears
this bit when it completes the data transfer.
Espressif Systems 197 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Bits

Name

Description

30

CES (Card Error Summary)

These error bits indicate the status of the transition to
or from the card.

The following bits are also present in RINTSTS, which
indicates their digital logic OR gate.

EBE: End Bit Error

RTO: Response Time out

RCRC: Response CRC

SBE: Start Bit Error

DRTO: Data Read Timeout

DCRC: Data CRC for Receive

RE: Response Error

29:6

Reserved

Reserved

ER (End of Ring)

When set, this bit indicates that the descriptor list has
reached its final descriptor. The DMAC then returns
to the base address of the list, creating a Descriptor
Ring.

CH
(Second Address Chained)

When set, this bit indicates that the second address in
the descriptor is the Next Descriptor address. When
this bit is set, BS2 (DES1[25:13]) should be all zeros.

FD (First Descriptor)

When set, this bit indicates that this descriptor con-
tains the first buffer of the data. If the size of the first
buffer is O, the Next Descriptor contains the beginning
of the data.

LD (Last Descriptor)

This bit is associated with the last block of a DMA
transfer. When set, the bit indicates that the buffers
pointed by this descriptor are the last buffers of the
data. After this descriptor is completed, the remain-
ing byte countis O. In other words, after the descriptor
with the LD bit set is completed, the remaining byte
count should be O.

DIC (Disable Interrupt
on Completion)

When set, this bit will prevent the setting of the TI/RI
bit of the DMAC Status Register (IDSTS) for the data
that ends in the buffer pointed by this descriptor.

Reserved

Reserved

The DES1 element contains the buffer size.

Table 9-3. DES1

Bits Name Description
31:26 Reserved Reserved
25:13 Reserved Reserved
Espressif Systems 198 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Bits Name Description
Indicates the data buffer byte size, which must be a

i multiple of four. In the case where the buffer size is not
12:0 BS1 (Buffer 1 Size) , . . _
a multiple of four, the resulting behavior is undefined.

This field should not be zero.

The DES2 element contains the address pointer to the data buffer.

Table 9-4. DES2

Bits Name Description
) These bits indicate the physical address of the data
31:0 Buffer Address Pointer 1 bUft
uffer.

The DESS element contains the address pointer to the next descriptor if the present descriptor is not the last one

in a chained descriptor structure.
Table 9-5. DES3

Bits Name Description

If the Second Address Chained (DESO[4]) bit is set,
then this address contains the pointer to the physical
31:0 Next Descriptor Address memory where the Next Descriptor is present.

If this is not the last descriptor, then the Next Descrip-
tor address pointer must be DES3[1:0] = O.

9.9 Initialization
9.9.1 DMAC Initialization

The DMAC initialization should proceed as follows:
e Write to the DMAC Bus Mode Register (BMOD_REG) will set the Host bus’s access parameters.
¢ Write to the DMAC Interrupt Enable Register (IDINTEN) will mask any unnecessary interrupt causes.

e The software driver creates either the transmit or the receive descriptor list. Then, it writes to the DMAC
Descriptor List Base Address Register (DBADDR), providing the DMAC with the starting address of the list.

e The DMAC engine attempts to acquire descriptors from descriptor lists.

9.9.2 DMAC Transmission Initialization
The DMAC transmission occurs as follows:

1. The Host sets up the elements (DESO-DES3) for transmission, and sets the OWN bit (DESO[31]). The Host
also prepares the data buffer.

2. The Host programs the write-data command in the CMD register in BIU.

3. The Host also programs the required transmit threshold (TX_WMARK field in FIFOTH register).

Espressif Systems 199 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

. The DMAC engine fetches the descriptor and checks the OWN bit. If the OWN bit is not set, it means that

the host owns the descriptor. In this case, the DMAC enters a suspend-state and asserts the Descriptor
Unable interrupt in the IDSTS register. In such a case, the host needs to release the DMAC by writing any
value to PLDMND_REG.

It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a transfer can be
done.

Subsequently, the DMAC engine waits for a DMA interface request (dw_dma_req) from BIU. This request will
be generated, based on the programmed transmit-threshold value. For the last bytes of data which cannot
be accessed using a burst, single transfers are performed on the AHB Master Interface.

. The DMAC fetches the transmit data from the data buffer in the Host memory and transfers them to FIFO for

transmission to card.

When data span across multiple descriptors, the DMAC fetches the next descriptor and extends its operation
using the following descriptor. The last descriptor bit indicates whether the data span multiple descriptors
or not.

When data transmission is complete, the status information is updated in the IDSTS register by setting the
Transmit Interrupt, if it has already been enabled. Also, the OWN bit is cleared by the DMAC by performing
a write transaction to DESO.

9.9.3 DMAC Reception Initialization
The DMAC reception occurs as follows:

1.
2.

The Host sets up the element (DESO-DESS) for reception, and sets the OWN bit (DESQ[31]).
The Host programs the read-data command in the CMD register in BIU.
Then, the Host programs the required level of the receive-threshold (RX_WMARK field in FIFOTH register).

The DMAC engine fetches the descriptor and checks the OWN bit. If the OWN bit is not set, it means that the
host owns the descriptor. In this case, the DMA enters a suspend-state and asserts the Descriptor Unable

interrupt in the IDSTS register. In such a case, the host needs to release the DMAC by writing any value to
PLDMND_REG.

It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a transfer can be
done.

. The DMAC engine then waits for a DMA interface request (dw_dma_req) from BIU. This request will be

generated, based on the programmed receive-threshold value. For the last bytes of the data which cannot
be accessed using a burst, single transfers are performed on the AHB.

. The DMAC fetches the data from FIFO and transfers them to the Host memory.

When data span across multiple descriptors, the DMAC will fetch the next descriptor and extend its operation
using the following descriptor. The last descriptor bit indicates whether the data span multiple descriptors
or not.

. When data reception is complete, the status information is updated in the IDSTS register by setting Receive-

Interrupt, if it has already been enabled. Also, the OWN bit is cleared by the DMAC by performing a write-
transaction to DESO.

Espressif Systems 200 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

9.10 Clock Phase Selection
If the setup time requirements for the input or output data signal are not met, users can specify the clock phase,
as shown in the figure below.

MUX0

clock_phase0

clock_phase90
—_—»

MUX2 >

1
\ clk_out
/

clock_phase180 0
—_—>

MUX1 1

sdio_host clock phase select

clock_phase270
—_—>

Figure 9-9. Clock Phase Selection

Please find detailed information on the clock phase selection register CLK_EDGE_SEL in Section Registers.

9.11 Interrupt
Interrupts can be generated as a result of various events. The IDSTS register contains all the bits that might cause
an interrupt. The IDINTEN register contains an enable bit for each of the events that can cause an interrupt.

There are two groups of summary interrupts, "Normal” ones (bit8 NIS) and "Abnormal” ones (bit9 AIS), as outlined in
the IDSTS register. Interrupts are cleared by writing 1 to the position of the corresponding bit. When all the enabled
interrupts within a group are cleared, the corresponding summary bit is also cleared. When both summary bits are
cleared, the interrupt signal dmac_intr_o is de-asserted (stops signalling).

Interrupts are not queued up, and if a new interrupt-event occurs before the driver has responded to it, no addi-
tional interrupts are generated. For example, the Receive Interrupt IDSTS[1] indicates that one or more data were
transferred to the Host buffer.

An interrupt is generated only once for concurrent events. The driver must scan the IDSTS register for the interrupt
cause.

9.12 Register Summary
The addresses in this section are relative to the SD/MMC base address provided in Table 1-6 Peripheral Address
Meapping in Chapter 1 System and Memory.

Name Description Address Access

CTRL_REG Control register 0x0000 R/W

CLKDIV_REG Clock divider configuration register 0x0008 R/W
Espressif Systems 201 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Name Description Address Access
CLKSRC_REG Clock source selection register 0x000C R/W
CLKENA_REG Clock enable register 0x0010 R/W
TMOUT_REG Data and response timeout configuration register | 0x0014 R/W
CTYPE_REG Card bus width configuration register 0x0018 R/W
BLKSIZ_REG Card data block size configuration register 0x001C R/W
BYTCNT_REG Data transfer length configuration register 0x0020 R/W
INTMASK_REG SDIO interrupt mask register 0x0024 R/W
CMDARG_REG Command argument data register 0x0028 R/W
CMD_REG Command and boot configuration register 0x002C R/W
RESPO_REG Response data register 0x0030 RO
RESP1_REG Long response data register 0x0034 RO
RESP2_REG Long response data register 0x0038 RO
RESP3_REG Long response data register 0x003C RO
MINTSTS_REG Masked interrupt status register 0x0040 RO
RINTSTS_REG Raw interrupt status register 0x0044 R/W
STATUS_REG SD/MMC status register 0x0048 RO
FIFOTH_REG FIFO configuration register 0x004C R/W
CDETECT_REG Card detect register 0x0050 RO
WRTPRT_REG Card write protection (WP) status register 0x0054 RO
TCBCNT_REG Transferred byte count register 0x005C RO
TBBCNT_REG Transferred byte count register 0x0060 RO
DEBNCE_REG Debounce filter time configuration register 0x0064 R/W
USRID_REG User ID (scratchpad) register 0x0068 R/W
RST_N_REG Card reset register 0x0078 R/W
BMOD_REG Burst mode transfer configuration register 0x0080 R/W
PLDMND_REG Poll demand configuration register 0x0084 WO
DBADDR_REG Descriptor base address register 0x0088 R/W
IDSTS_REG IDMAC status register 0x008C R/W
IDINTEN_REG IDMAC interrupt enable register 0x0090 R/W
DSCADDR_REG Host descriptor address pointer 0x0094 RO
BUFADDR_REG Host buffer address pointer register 0x0098 RO
CLK_EDGE_SEL Clock phase selection register 0x0800 R/W

9.13 Registers

SD/MMC controller registers can be accessed by the APB bus of the CPU.

The addresses in this section are relative to the SD/MMC base address provided in Table 1-6 Peripheral Address

Mapping in Chapter 1 System and Memory.

Espressif Systems

202
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.1. CTRL_REG (0x0000)

N
%/\?*
S
&8 o &
o1& PO
N Q <Q
So%e O & fa &
S 5 S PSP s o FF
@ @ @ e L/ @ Q@
S X P KIS
%‘2’6 %Q'é & &Véo Y 4oy N (2?0 /%Q’é&/ @Q’é@‘?‘/ O
@ @ @ FEFLLLIESESKLP
8 4 0

‘31 25|24|23 12|11|10|9|

\ 0x00 0x00

CEATA_DEVICE_INTERRUPT_STATUS Software should appropriately write to this bit after the
power-on reset or any other reset to the CE-ATA device. After reset, the CE-ATA device’s interrupt
is usually disabled (NIEN = 1). If the host enables the CE-ATA device’s interrupt, then software
should set this bit. (R/W)

SEND_AUTO_STOP_CCSD Always set send_auto_stop_ccsd and send_ccsd bits together;
send_auto_stop_ccsd should not be set independently of send_ccsd. When set, SD/MMC au-
tomatically sends an internally-generated STOP command (CMD12) to the CE-ATA device. After
sending this internally-generated STOP command, the Auto Command Done (ACD) bit in RINTSTS
is set and an interrupt is generated for the host, in case the ACD interrupt is not masked. Af-
ter sending the Command Completion Signal Disable (CCSD), SD/MMC automatically clears the
send_auto_stop_ccsd bit. (R/W)

SEND_CCSD When set, SOD/MMC sends CCSD to the CE-ATA device. Software sets this bit only
if the current command is expecting CCS (that is, RW_BLK), and if interrupts are enabled for the
CE-ATA device. Once the CCSD pattern is sent to the device, SD/MMC automatically clears the
send_ccsd bit. It also sets the Command Done (CD) bit in the RINTSTS register, and generates
an interrupt for the host, in case the Command Done interrupt is not masked. NOTE: Once the
send_ccsd bit is set, it takes two card clock cycles to drive the CCSD on the CMD line. Due to this,
within the boundary conditions the CCSD may be sent to the CE-ATA device, even if the device
has signalled CCS. (R/W)

ABORT_READ_DATA After a suspend-command is issued during a read-operation, software polls the
card to find when the suspend-event occurred. Once the suspend-event has occurred, software
sets the bit which will reset the data state machine that is waiting for the next block of data. This
bit is automatically cleared once the data state machine is reset to idle. (R/W)

SEND_IRQ_RESPONSE Bit automatically clears once response is sent. To wait for MMC card inter-
rupts, host issues CMD40 and waits for interrupt response from MMC card(s). In the meantime, if
host wants SD/MMC to exit waiting for interrupt state, it can set this bit, at which time SD/MMC
command state-machine sends CMD40 response on bus and returns to idle state. (R/W)

Continued on the next page...

Espressif Systems 203 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.1. CTRL_REG (0x0000)

Continued from the previous page...
READ_WAIT For sending read-wait to SDIO cards. (R/W)
INT_ENABLE Global interrupt enable/disable bit. O: Disable; 1: Enable. (R/W)

DMA_RESET To reset DMA interface, firmware should set bit to 1. This bit is auto-cleared after two
AHB clocks. (R/W)

FIFO_RESET To reset FIFO, firmware should set bit to 1. This bit is auto-cleared after completion of
reset operation. Note: FIFO pointers will be out of reset after 2 cycles of system clocks in addition
to synchronization delay (2 cycles of card clock), after the fifo_reset is cleared. (R/W)

CONTROLLER_RESET To reset controller, firmware should set this bit. This bit is auto-cleared after
two AHB and two cclk_in clock cycles. (R/W)

Register 9.2. CLKDIV_REG (0x0008)

& S & &
QY ® R ©
o) > > 9
\JT/ \[—/ \L_./ {_./
o o o o
‘ 31 24|23 16 | 15 8|7 0 ‘
\ 0x000 0x000 0x000 0Xx000 \ Reset

CLK_DIVIDER3 Clock divider-3 value. Clock division factor is 2*n, where n=0 bypasses the divider
(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of OxFF means
divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented
because only one clock divider is supported. (R/W)

CLK_DIVIDER2 Clock divider-2 value. Clock division factor is 2*n, where n=0 bypasses the divider
(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of OxFF means
divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented
because only one clock divider is supported. (R/W)

CLK_DIVIDER1 Clock divider-1 value. Clock division factor is 2*n, where n=0 bypasses the divider
(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of OxFF means
divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented
because only one clock divider is supported. (R/W)

CLK_DIVIDERO Clock divider-0 value. Clock division factor is 2*n, where n=0 bypasses the divider
(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of OXFF means
divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented
because only one clock divider is supported. (R/W)

Espressif Systems 204 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.3. CLKSRC_REG (0x000C)

(</®
Q\
')
& $
A O
‘ 31 4 | 3 0 ‘
‘ 0x000000 | 0x0 \ Reset

CLKSRC_REG Clock divider source for two SD cards is supported. Each card has two bits assigned
to it. For example, bit[1:0] are assigned for card 0, bit[3:2] are assigned for card 1. Card 0 maps
and internally routes clock divider[0:3] outputs to cclk_out[1:0] pins, depending on bit value.

00 : Clock divider 0;

01 : Clock divider 1;

10 : Clock divider 2;

11 : Clock divider 3.

In MMGC-Ver3.3-only controller, only one clock divider is supported. The cclk_out is always from
clock divider O, and this register is not implemented. (R/W)

Register 9.4. CLKENA_REG (0x0010)

ol
Q
& >
& o&_
‘ 31 2 | 1 0 ‘
\ 0x00000 |0xooooo\ Reset
CCLK_ENABEL Clock-enable control for two SD card clocks and one MMC card clock is supported.
0: Clock disabled;
1: Clock enabled.
In MMC-Ver3.3-only mode, since there is only one cclk_out, only cclk_enable[Q] is used. (R/W)
Espressif Systems 205 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.5. TMOUT_REG (0x0014)

&
&
N N
& &
o &
<& 20
‘ 31 8|7 0 ‘
\ OXOFFFFFF 0x040 \ Reset

DATA_TIMEOUT Value for card data read timeout. This value is also used for data starvation by host
timeout. The timeout counter is started only after the card clock is stopped. This value is specified
in number of card output clocks, i.e. cclk_out of the selected card.

NOTE: The software timer should be used if the timeout value is in the order of 100 ms. In this
case, read data timeout interrupt needs to be disabled. (R/W)

RESPONSE_TIMEOUT Response timeout value. Value is specified in terms of number of card output
clocks, i.e., cclk_out. (R/W)

Register 9.6. CTYPE_REG (0x0018)

® >
§ §
D N\ D N
%Q,é Q7 %Q)é Q7
§® o?‘ \J\Q' O?‘
‘ 31 18 | 17 16 | 15 2|1 0 ‘
\ 0x00000 0x00000 0x00000 0xooooo\ Reset

CARD_WIDTH8 One bit per card indicates if card is in 8-bit mode.
0: Non 8-bit mode;
1: 8-bit mode.
Bit[17:16] correspond to card[1:0] respectively. (R/W)

CARD_WIDTH4 One bit per card indicates if card is 1-bit or 4-bit mode.

0: 1-bit mode;
1: 4-bit mode.
Bit[1:0] correspond to card[1:0] respectively. Only NUM_CARDS*2 number of bits are imple-
mented. (R/W)
Register 9.7. BLKSIZ_REG (0x001C)
Y%
5 S
i o
& O
© ol
‘31 16|l5 0‘
\oooooooooooooooo| 0x00200 \Reset
BLOCK_SIZE Block size. (R/W)
Espressif Systems 206 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.8. BYTCNT_REG (0x0020)

E]

‘ 0x000000200 \ Reset

BYTCNT_REG Number of bytes to be transferred, should be an integral multiple of Block Size for
block transfers. For data transfers of undefined byte lengths, byte count should be set to 0. When
byte count is set to O, it is the responsibility of host to explicitly send stop/abort command to
terminate data transfer. (R/W)

Register 9.9. INTMASK_REG (0x0024)

?9%'
S i o
@ > ¥
© N
& S N
‘ 31 18 | 17 16 | 15 0 ‘
\ 0x00000 0x00000 0x00000 \ Reset

SDIO_INT_MASK SDIO interrupt mask, one bit for each card. Bit[17:16] correspond to card[15:0] re-
spectively. When masked, SDIO interrupt detection for that card is disabled. 0 masks an interrupt,
and 1 enables an interrupt. In MMC-Ver3.3-only mode, these bits are always 0. (R/W)

INT_MASK These bits used to mask unwanted interrupts. A value of O masks interrupt, and a value
of 1 enables the interrupt. (R/W)
Bit 15 (EBE): End-bit error, read/write (no CRC)
Bit 14 (ACD): Auto command done
Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt
Bit 12 (HLE): Hardware locked write error
Bit 11 (FRUN): FIFO underrun/overrun error
Bit 10 (HTO): Data starvation-by-host timeout/Volt_switch_int
Bit 9 (DRTO): Data read timeout
Bit 8 (RTO): Response timeout
Bit 7 (DCRC): Data CRC error
Bit 6 (RCRC): Response CRC error
Bit 5 (RXDR): Receive FIFO data request
Bit 4 (TXDR): Transmit FIFO data request
Bit 3 (DTO): Data transfer over
Bit 2 (CD): Command done
Bit 1 (RE): Response error
Bit O (CD): Card detect

Espressif Systems 207 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.10. CMDARG_REG (0x0028)

E]

‘ 0x000000000 \ Reset

CMDARG_REG Value indicates command argument to be passed to the card. (R/W)

Register 9.11. CMD_REG (0x002C)

ofo] 0x00 0x00 |Reset

START_CMD Start command. Once command is served by the ClIU, this bit is automatically cleared.
When this bit is set, host should not attempt to write to any command registers. If a write is
attempted, hardware lock error is set in raw interrupt register. Once command is sent and a
response is received from SD_MMC_CEATA cards, Command Done bit is set in the raw interrupt
Register. (R/W)

USE_HOLE Use Hold Register. (R/W) 0: CMD and DATA sent to card bypassing HOLD Register; 1:
CMD and DATA sent to card through the HOLD Register.

CCS_EXPECTED Expected Command Completion Signal (CCS) configuration. (R/W)
0: Interrupts are not enabled in CE-ATA device (NIEN = 1 in ATA control register), or command
does not expect CCS from device.
1: Interrupts are enabled in CE-ATA device (nIEN = 0), and RW_BLK command expects command
completion signal from CE-ATA device.
If the command expects Command Completion Signal (CCS) from the CE-ATA device, the software
should set this control bit. SD/MMC sets Data Transfer Over (DTO) bit in RINTSTS register and
generates interrupt to host if Data Transfer Over interrupt is not masked.

READ_CEATA_DEVICE Read access flag. (R/W)
0: Host is not performing read access (RW_REG or RW_BLK)towards CE-ATA device
1: Host is performing read access (RW_REG or RW_BLK) towards CE-ATA device.
Software should set this bit to indicate that CE-ATA device is being accessed for read transfer.
This bit is used to disable read data timeout indication while performing CE-ATA read transfers.
Maximum value of I/0 transmission delay can be no less than 10 seconds. SD/MMC should not
indicate read data timeout while waiting for data from CE-ATA device. (R/W)

Continued on the next page...

Espressif Systems 208 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.11. CMD_REG (0x002C)

Continued from the previous page...

UPDATE_CLOCK_REGISTERS_ONLY (R/W)
0: Normal command sequence.
1: Do not send commands, just update clock register value into card clock domain
Following register values are transferred into card clock domain: CLKDIV, CLRSRC, and CLKENA.
Changes card clocks (change frequency, truncate off or on, and set low-frequency mode). This
is provided in order to change clock frequency or stop clock without having to send command to
cards.
During normal command sequence, when update_clock_registers_only = 0, following control reg-
isters are transferred from BIU to CIU: CMD, CMDARG, TMOUT, CTYPE, BLKSIZ, and BYTCNT.
CIU uses new register values for new command sequence to card(s). When bit is set, there are no
Command Done interrupts because no command is sent to SD_MMC_CEATA cards.

CARD_NUMBER Card number in use. Represents physical slot number of card being accessed. In
MMC-Ver3.3-only mode, up to two cards are supported. In SD-only mode, up to two cards are

supported. (R/W)

SEND_INITIALIZATION (R/W)
0: Do not send initialization sequence (80 clocks of 1) before sending this command.
1: Send initialization sequence before sending this command.
After power on, 80 clocks must be sent to card for initialization before sending any commands to
card. Bit should be set while sending first command to card so that controller will initialize clocks
before sending command to card.

STOP_ABORT_CMD (R/W)
0: Neither stop nor abort command can stop current data transfer. If abort is sent to function-
number currently selected or not in data-transfer mode, then bit should be set to O.
1: Stop or abort command intended to stop current data transfer in progress. When open-ended
or predefined data transfer is in progress, and host issues stop or abort command to stop data
transfer, bit should be set so that command/data state-machines of CIU can return correctly to idle
state.

WAIT_PRVDATA_COMPLETE (R/W)
0: Send command at once, even if previous data transfer has not completed;
1: Wait for previous data transfer to complete before sending Command.
The wait_prvdata_complete = 0 option is typically used to query status of card during data transfer
or to stop current data transfer. card_number should be same as in previous command.

SEND_AUTO_STOP (R/W)
0: No stop command is sent at the end of data transfer;
1: Send stop command at the end of data transfer.

Continued on the next page...

Espressif Systems 209 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.11. CMD_REG (0x002C)

Continued from the previous page ...

TRANSFER_MODE (R/W)
0: Block data transfer command;
1: Stream data transfer command. Don’t care if no data expected.

READ/WRITE (R/W)
0: Read from card;
1: Write to card.
Don’t care if no data is expected from card.

DATA_EXPECTED (R/W)
0: No data transfer expected.
1: Data transfer expected.

CHECK_RESPONSE_CRC (R/W)
0: Do not check;
1: Check response CRC.
Some of command responses do not return valid CRC bits. Software should disable CRC checks
for those commands in order to disable CRC checking by controller.

RESPONSE_LENGTH (R/W)
0: Short response expected from card;
1: Long response expected from card.

RESPONSE_EXPECT (R/W)
0: No response expected from card;
1: Response expected from card.

CMD_INDEX Command index. (R/W)

Register 9.12. RESP0_REG (0x0030)

‘ 0x000000000 \ Reset

RESPO_REG Bit[31:0] of response. (RO)

Register 9.13. RESP1_REG (0x0034)

E 3

‘ 0x000000000 \ Reset

RESP1_REG Bit[63:32] of long response. (RO)

Espressif Systems 210 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.14. RESP2_REG (0x0038)

B

‘ 0x000000000 \ Reset
RESP2_REG Bit[95:64] of long response. (RO)
Register 9.15. RESP3_REG (0x003C)
‘ 0x000000000 \ Reset
RESP3_REG Bit[127:96] of long response. (RO)
Register 9.16. MINTSTS_REG (0x0040)
&
s &
& o%§
S &
& KX
& Y
‘31 18 | 17 16 | 15 0‘
\ 0 ox0 0x00000 \ Reset

SDIO_INTERRUPT_MSK Interrupt from SDIO card, one bit for each card. Bit[17:16] correspond

to card1 and cardO, respectively. SDIO interrupt for card is enabled only if corresponding
sdio_int_mask bit is set in Interrupt mask register (Setting mask bit enables interrupt). (RO)

Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt
Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation by host timeout (HTO)
Bit 9 (DTRO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit O (CD): Card detect

Espressif Systems 211

Submit Documentation Feedback

INT_STATUS_MSK Interrupt enabled only if corresponding bit in interrupt mask register is set. (RO)

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.17. RINTSTS_REG (0x0044)

&
¥ &
& S
Q,e@& O>$ <€
& & N
E o s]
‘ 0x00000 0x0 0x00000 ‘ Reset

SDIO_INTERRUPT_RAW Interrupt from SDIO card, one bit for each card. Bit[17:16] correspond to

card1 and cardQ, respectively. Setting a bit clears the corresponding interrupt bit and writing O has

no effect. (R/W)
0: No SDIO interrupt from card;
1: SDIO interrupt from card.

In MMC-Ver3.3-only mode, these bits are always 0. Bits are logged regardless of interrupt-mask

status. (R/W)

are logged regardless of interrupt mask status. (R/W)
Bit 15 (EBE): End-bit error, read/write (nho CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt
Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation by host timeout (HTO)
Bit 9 (DTRO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit O (CD): Card detect

Espressif Systems 212

Submit Documentation Feedback

INT_STATUS_RAW Setting a bit clears the corresponding interrupt and writing 0 has no effect. Bits

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MM

C Host Controller

Register 9.18. STATUS_REG (0x0048)

~\ &Q/%
9 # RSl
& S o & R
N > &7 /\?@ O < % &
O 3 EEOC G | St

G& & & FFF & LLLEL
‘31|30 29 17|16 11|10|9|8|7 4|3|2|1|0‘
\0|o| 0x000 | 0x00 |1|1|1| ox01 | | | |

FIFO_COUNT FIFO count, number of filled locations in FIFO. (RO)

RESPONSE_INDEX Index of previous response, including any auto-stop sent by core. (RO)

DATA_STATE_MC_BUSY Data transmit or receive state-machine is busy. (RO)

DATA_BUSY Inverted version of raw selected card_data[0]. (RO)

0
;

: Card data not busy;
. Card data busy.

DATA_3_STATUS Raw selected card_data[3], checks whether card is present. (RO)

0
;

: card not present;
. card present.

COMMAND_FSM_STATES Command FSM states. (RO)

0:

9:

10:
11:
12:
13:
14:
15:

Idle
: Send init sequence
: Send cmd start bit
: Send cmd tx bit
Send cmd index + arg
Send cmd crc7
Send cmd end bit
. Receive resp start bit
: Receive resp IRQ response
Receive resp tx bit
Receive resp cmd idx
Receive resp data
Receive resp crc7
Receive resp end bit
Cmd path wait NCC
Wait, cmd-to-response turnaround

FIFO_FULL FIFO is full status. (RO)

FIFO_EMPTY FIFO is empty status. (RO)

FIFO_TX_WATERMARK FIFO reached Transmit watermark level, not qualified with data transfer. (RO)

FIFO_RX_WATERMARK FIFO reached Receive watermark level, not qualified with data transfer. (RO)

Espressif Systems

213

ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.19. FIFOTH_REG (0x004C)

<&
&
&
&
(4
Q\/
D & D ﬁh D @v?‘\L

& W Q)@Q’é \/$ Q)%Q)é d§
A Q A 'S A
‘31|3o 28|27|26 1s|15 12|11 o‘
‘O| 0x0 |O|x X X X X X X X X X ><|O 0 O O| 0x0000 ‘Reset

DMA_MULTIPLE_TRANSACTION_SIZE Burst size of multiple transaction, should be programmed
same as DMA controller multiple-transaction-size SRC/DEST_MSIZE. 000: 1-byte transfer; 001:
4-byte transfer; 010: 8-byte transfer; 011: 16-byte transfer; 100: 32-byte transfer; 101: 64-byte
transfer; 110: 128-byte transfer; 111: 256-byte transfer. (R/W)

RX_WMARK FIFO threshold watermark level when receiving data to card.When FIFO data count
reaches greater than this number (FIFO_RX_WATERMARK), DMA/FIFO request is raised. During
end of packet, request is generated regardless of threshold programming in order to complete any
remaining data.ln non-DMA mode, when receiver FIFO threshold (RXDR) interrupt is enabled, then
interrupt is generated instead of DMA request.During end of packet, interrupt is not generated if
threshold programming is larger than any remaining data. It is responsibility of host to read remain-
ing bytes on seeing Data Transfer Done interrupt.In DMA mode, at end of packet, even if remaining
bytes are less than threshold, DMA request does single transfers to flush out any remaining bytes
before Data Transfer Done interrupt is set. (R/W)

TX_WMARK FIFO threshold watermark level when transmitting data to card. When FIFO data count
is less than or equal to this number (FIFO_TX_WATERMARK), DMA/FIFO request is raised. If In-
terrupt is enabled, then interrupt occurs. During end of packet, request or interrupt is generated,
regardless of threshold programming.In non-DMA mode, when transmit FIFO threshold (TXDR) in-
terrupt is enabled, then interrupt is generated instead of DMA request. During end of packet, on
last interrupt, host is responsible for filling FIFO with only required remaining bytes (not before FIFO
is full or after ClU completes data transfers, because FIFO may not be empty). In DMA mode, at
end of packet, if last transfer is less than burst size, DMA controller does single cycles until required
bytes are transferred. (R/W)

Espressif Systems 214 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.20. CDETECT_REG (0x0050)

%
<</C§/
S Qé}
& &’
QQ% o
’ 0x0 0x0 ‘Reset
CARD_DETECT_N Value on card_detect_n input ports (1 bit per card), read-only bits.O represents
presence of card. Only NUM_CARDS number of bits are implemented. (RO)
Register 9.21. WRTPRT_REG (0x0054)
A
&
S
I <
Q)&Q) <<<//
2 &
N Q
’ 31 2|1 0 ‘
’ 0x0 0x0 ‘Reset
WRITE_PROTECT Value on card_write_prt input ports (1 bit per card).1 represents write protection.
Only NUM_CARDS number of bits are implemented. (RO)
Register 9.22. TCBCNT_REG (0x005C)
’ 0x000000000 \ Reset
TCBCNT_REG Number of bytes transferred by CIU unit to card. (RO)
Register 9.23. TBBCNT_REG (0x0060)
’ 31 0 ‘
’ 0x000000000 \ Reset
TBBCNT_REG Number of bytes transferred between Host/DMA memory and BIU FIFO. (RO)
Espressif Systems 215 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.24. DEBNCE_REG (0x0064)

&
&
D s
& O
& &
A Q
‘31 24 | 23 0‘
\o 0 0 00 0 0 O 0x0000000 \Reset

DEBOUNCE_COUNT Number of host clocks (clk) used by debounce filter logic. The typical de-
bounce time is 5 ~ 25 ms to prevent the card instability when the card is inserted or removed.
(R/W)

Register 9.25. USRID_REG (0x0068)

E]

‘ 0x000000000 \ Reset

USRID_REG User identification register, value set by user. Default reset value can be picked by user
while configuring core before synthesis. Can also be used as a scratchpad register by user. (R/W)

Register 9.26. RST_N_REG (0x0078)

&
& &
\@@QJ Q\é/
E T
| 0 | o<t |Reset
RST_CARD_RESET Hardware reset.1: Active mode; 0: Reset. These bits cause the cards to enter
pre-idle state, which requires them to be re-initialized. CARD_RESET][0] should be set to 1’b0 to
reset card0, CARD_RESET][1] should be set to 1’b0 to reset card1.The number of bits implemented
is restricted to NUM_CARDS. (R/W)
Espressif Systems 216 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.27. BMOD_REG (0x0080)

& O i oo% & O Q)o%\@
e 7/ s 7/

& & & WO

\31 11|10 s|7|e 2|1|o‘

\ooooooooooooooooooooo| 0x0 |o| 0x00 |0|0\Reset

BMOD_PBL Programmable Burst Length. These bits indicate the maximum number of beats to be
performed in one IDMAC transaction. The IDMAC will always attempt to burst as specified in PBL
each time it starts a burst transfer on the host bus. The permissible values are 1, 4, 8, 16, 32, 64,
128 and 256. This value is the mirror of MSIZE of FIFOTH register. In order to change this value,
write the required value to FIFOTH register. This is an encode value as follows:

000: 1-byte transfer; 001: 4-byte transfer; 010: 8-byte transfer; 011: 16-byte transfer; 100: 32-
byte transfer; 101: 64-byte transfer; 110: 128-byte transfer; 111: 256-byte transfer.

PBL is a read-only value and is applicable only for data access, it does not apply to descriptor
access. (R/W)

BMOD_DE IDMAC Enable. When set, the IDMAC is enabled. (R/W)

BMOD_FB Fixed Burst. Controls whether the AHB Master interface performs fixed burst transfers or
not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal
burst transfers. When reset, the AHB will use SINGLE and INCR burst transfer operations. (R/W)

BMOD_SWR Software Reset. When set, the DMA Controller resets all its internal registers. It is
automatically cleared after one clock cycle. (R/W)

Register 9.28. PLDMND_REG (0x0080)

E]

‘ 0x000000000 \ Reset

PLDMND_REG Poll Demand. If the OWN bit of a descriptor is not set, the FSM goes to the Suspend
state. The host needs to write any value into this register for the IDMAC FSM to resume normal
descriptor fetch operation. This is a write only register, PD bit is write-only. (WO)

Register 9.29. DBADDR_REG (0x0088)

E 3

‘ 0x000000000 \ Reset

DBADDR_REG Start of Descriptor List. Contains the base address of the First Descriptor. The LSB
bits [1:0] are ighored and taken as all-zero by the IDMAC internally. Hence these LSB bits may be
treated as read-only. (R/W)

Espressif Systems 217 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.30. IDSTS_REG (0x008C)

s*
O
7 S
S & & 2L 5 P Fa
& 27 27 QU § QRIS KR K27
¢ & F OY ¢ FEEPES
‘31 17 | 16 13| 12 0] 9 8 |7 6 5 4 3 2 1 0 ‘
\ooooooooooooooo 0x00 0x0 ololo ooooooo\Rese’c

IDSTS_FSM DMAC FSM present state: (RO)
0: DMA_IDLE; 1: DMA_SUSPEND; 2: DESC_RD; 3: DESC_CHK; 4: DMA_RD_REQ_WAIT
5: DMA_WR_REQ_WAIT; 6: DMA_RD; 7: DMA_WR; 8: DESC_CLOSE.

IDSTS_FBE_CODE Fatal Bus Error Code. Indicates the type of error that caused a Bus Error. Valid
only when the Fatal Bus Error bit IDSTS[2] is set. This field does not generate an interrupt. (RO)
3b001: Host Abort received during transmission;
3b010: Host Abort received during reception;

Others: Reserved.

IDSTS_AIS Abnormal Interrupt Summary. Logical OR of the following: IDSTS[2] : Fatal Bus Interrupt,
IDSTS[4] : DU bit Interrupt. Only unmasked bits affect this bit. This is a sticky bit and must be
cleared each time a corresponding bit that causes AIS to be set is cleared. Writing 1 clears this

bit. (R/W)

IDSTS_NIS Normal Interrupt Summary. Logical OR of the following: IDSTS[O] : Transmit Interrupt,
IDSTS[1] : Receive Interrupt. Only unmasked bits affect this bit. This is a sticky bit and must be
cleared each time a corresponding bit that causes NIS to be set is cleared. Writing 1 clears this

bit. (R/W)

IDSTS_CES Card Error Summary. Indicates the status of the transaction to/from the card, also
present in RINTSTS. Indicates the logical OR of the following bits: EBE : End Bit Error, RTO :
Response Timeout/Boot Ack Timeout, RCRC : Response CRC, SBE : Start Bit Error, DRTO : Data
Read Timeout/BDS timeout, DCRC : Data CRC for Receive, RE : Response Error.

Writing 1 clears this bit. The abort condition of the IDMAC depends on the setting of this CES bit.
If the CES bit is enabled, then the IDMAC aborts on a response error. (R/W)

IDSTS_DU Descriptor Unavailable Interrupt. This bit is set when the descriptor is unavailable due to
OWN bit = 0 (DESQ[31] =0). Writing 1 clears this bit. (R/W)

IDSTS_FBE Fatal Bus Error Interrupt. Indicates that a Bus Error occurred (IDSTS[12:10]) . When this
bit is set, the DMA disables all its bus accesses. Writing 1 clears this bit. (R/W)

IDSTS_RI Receive Interrupt. Indicates the completion of data reception for a descriptor. Writing 1
clears this bit. (R/W)

IDSTS_TI Transmit Interrupt. Indicates that data transmission is finished for a descriptor. Writing 1
clears this bit. (R/W)

Espressif Systems 218 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.31. IDINTEN_REG (0x0090)

S
N A & QYA A
5 TS o I8 KASS
P L 5 LEHLLE
@ O ¢ OO ELO O
‘31 10 9 8 7 6 5 4 3 2 1 0 ‘

IDINTEN_AI Abnormal Interrupt Summary Enable. (R/W)
When set, an abnormal interrupt is enabled. This bit enables the following bits:
IDINTEN[2]: Fatal Bus Error Interrupt;
IDINTEN[4]: DU Interrupt.

IDINTEN_NI Normal Interrupt Summary Enable. (R/W)
When set, a normal interrupt is enabled. When reset, a normal interrupt is disabled. This bit enables
the following bits:
IDINTENIQ]: Transmit Interrupt;
IDINTEN[1]: Receive Interrupt.

IDINTEN_CES Card Error summary Interrupt Enable. When set, it enables the Card Interrupt sum-
mary. (R/W)

IDINTEN_DU Descriptor Unavailable Interrupt. When set along with Abnormal Interrupt Summary
Enable, the DU interrupt is enabled. (R/W)

IDINTEN_FBE Fatal Bus Error Enable. When set with Abnormal Interrupt Summary Enable, the Fatal
Bus Error Interrupt is enabled. When reset, Fatal Bus Error Enable Interrupt is disabled. (R/W)

IDINTEN_RI Receive Interrupt Enable. When set with Normal Interrupt Summary Enable, Receive
Interrupt is enabled. When reset, Receive Interrupt is disabled. (R/W)

IDINTEN_TI Transmit Interrupt Enable. When set with Normal Interrupt Summary Enable, Transmit
Interrupt is enabled. When reset, Transmit Interrupt is disabled. (R/W)

Register 9.32. DSCADDR_REG (0x0094)

E]

‘ 0x000000000 \ Reset

DSCADDR_REG Host Descriptor Address Pointer, updated by IDMAC during operation and cleared
on reset. This register points to the start address of the current descriptor read by the IDMAC.
(RO)

Espressif Systems 219 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

9 SD/MMC Host Controller

Register 9.33. BUFADDR_REG (0x0098)

E]

‘ 0x000000000 \ Reset

BUFADDR_REG Host Buffer Address Pointer, updated by IDMAC during operation and cleared on
reset. This register points to the current Data Buffer Address being accessed by the IDMAC. (RO)

Register 9.34. CLK_EDGE_SEL (0x0800)

& = &
> p 2 3 9
OQ()O/ Qé{/ Qé{/ ch/ Oéo Qé{/
3 < < < < <
%) \e/ \%/ \e/ \e/ \e/ \e/
k) S S A S
@ & & & & & &
‘31 21|20 17|16 13|12 9|8 6|5 3|2 0‘
\ 0x000 | 1 | 0x0 | ox1 | 0x0 | 0x0 | 0x0 \Reset

CCLKIN_EDGE_N This value should be equal to CCLKIN_EDGE_L. (R/W)

CCLKIN_EDGE_L The low level of the divider clock. The value should be larger than
CCLKIN_EDGE_H. (R/W)

CCLKIN_EDGE_H The high level of the divider clock. The value should be smaller than
CCLKIN_EDGE_L. (R/W)

CCLKIN_EDGE_SLF_SEL It is used to select the clock phase of the internal signal from phase90,
phase180, or phase270. (R/W)

CCLKIN_EDGE_SAM_SEL It is used to select the clock phase of the input signal from phase90,
phase180, or phase270. (R/W)

CCLKIN_EDGE_DRV_SEL It is used to select the clock phase of the output signal from phase90,
phase180, or phase270. (R/W)

Espressif Systems 220 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

10 Ethernet Media Access Controller (MAC)

10.1 Overview
Features of Ethernet

By using the external Ethernet PHY (physical layer), ESP32 can send and receive data via Ethernet MAC (Me-
dia Access Controller) according to the IEEE 802.3 standard, as Figure 10-1 shows. Ethernet is currently the
most commonly used network protocol that controls how data is transmitted over local- and wide-area networks,
abbreviated as LAN and WAN, respectively.

(MAC) (PHY)

Etheret Etheret EEH_TEH
Media Access Contraller <:> Physical Layer

RJ45

Figure 10-1. Ethernet MAC Functionality Overview

ESP32 MAC Ethernet complies with the following criteria:
e |EEE 802.3-2002 for Ethernet MAC

e Two industry-standard interfaces conforming with IEEE 802.3-2002: Media-Independent Interface (Mll) and
Reduced Media-Independent Interface (RMII).

Features of MAC Layer
e Support for a data transmission rate of 10 Mbit/s or 100 Mbit/s through an external PHY interface
e Communication with an external Fast Ethernet PHY through IEEE 802.3-compliant MIl and RMII interfaces

e Support for:

— Carrier Sense Multiple Access / Collision Detection (CSMA/CD) protocol in half-duplex mode

|IEEE 802.3x flow control in full-duplex mode

operations in full-duplex mode, forwarding the received pause-control frame to the user application

backpressure flow control in half-duplex mode

If the flow control input signal disappears during a full-duplex operation, a pause frame with zero pause
time value is automatically transmitted.

e The Preamble and the Start Frame Delimiter (SFD) are inserted in the Transmit path, and deleted in the
Receive path.

e Cyclic Redundancy Check (CRC) and Pad can be controlled on a per-frame basis.

Espressif Systems 221 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

e The Pad is generated automatically, if data is below the minimum frame length.
® Programmable frame length supporting jumbo frames of up to 16 KB
e Programmable Inter-frame Gap (IFG) (40-96 bit times in steps of 8)
e Support for a variety of flexible address filtering modes:
- Up to eight 48-bit perfect address filters to mask each byte
- Up to eight 48-bit SA address comparison checks to mask each byte
- All multicast address frames can be transmitted
- All frames in mixed mode can be transmitted without being filtered for network monitoring
— A status report is attached each time all incoming packets are transmitted and filtered
e Returning a 32-bit status for transmission and reception of packets respectively
e Separate transmission, reception, and control interfaces for the application
e Use of the Management Data Input/Output (MDIO) interface to configure and manage PHY devices

e Support for the offloading of received IPv4 and TCP packets encapsulated by an Ethernet frame in the
reception function

e Support for checking IPv4 header checksums, as well as TCP, UDP, or ICMP (Internet Control Message
Protocol) checksums encapsulated in IPv4/IPv6 packets in the enhanced reception function

e Two sets of FIFOs: one 2 KB Tx FIFO with programmable threshold and one 2 KB Rx FIFO with configurable
threshold (64 bytes by default)

¢ When Rx FIFO stores multiple frames, the Receive Status Vector is inserted into the Rx FIFO after transmitting
an EOF (end of frame), so that the Rx FIFO does not need to store the Receive Status of these frames.

® |n store-and-forward mode, all error frames can be filtered during reception, but not forwarded to the appli-
cation.

e Under-sized good frames can be forwarded.
e Support for data statistics by generating pulses for lost or corrupted frames in the Rx FIFO due to an overflow
e Support for store-and-forward mechanism when transmitting data to the MAC core

e Automatic re-transmission of collided frames during transmission (subject to certain conditions, see section
10.2.1.2)

e Discarding frames in cases of late collisions, excessive collisions, excessive deferrals, and under-run condi-
tions

e The Tx FIFO is flushed by software control.

e Calculating the IPv4 header checksum, as well as the TCP, UDP, or ICMP checksum, and then inserting them
into frames transmitted in store-and-forward mode.

Ethernet Block Diagram
Figure 10-2 shows the block diagram of the Ethernet.

Ethernet MAC consists of the MAC-layer configuration register module and three layers: EMAC_CORE (MAC Core
Layer), EMAC_MTL (MAC Transition Layer), and EMAC_DMA (Direct Memory Access). Each of these three layers

Espressif Systems 222 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

NS

: AHB % :
<:> Master IF<:::> 2.4 I\ VY iR <:>
Optional
g P B
: IF .

(MII/RMIT)
MAC
APB DMA OMR : CSR
. Slave IF CSR | Register -
EMAC-CORE
EMAGDMA i EMACMTL bt

Figure 10-2. Ethernet Block Diagram

has two directions: Tx and Rx. They are connected to the system through the Advanced High-Performance Bus
(AHB) and the Advanced Peripheral Bus (APB) on the chip. Off the chip, they communicate with the external PHY
through the MIl and RMII interfaces to establish an Ethernet connection.

10.2 EMAC_CORE

The MAC supports many interfaces with the PHY chip. The PHY interface can be selected only once after reset.
The MAC communicates with the application side (DMA side), using the MAC Transmit Interface (MTI), MAC Receive
Interface (MRI) and the MAC Control Interface (MCI).

10.2.1 Transmit Operation

A transmit operation is initiated when the MTL Application pushes in data at the time a response signal is asserted.
When the SOF (start of frame) signal is detected, the MAC accepts the data and begins transmitting to the RMII
or MIl. The time required to transmit the frame data to the RMII or MIl, after the application initiates transmission,
varies, depending on delay factors like IFG delay, time to transmit Preamble or SFD (Start Frame Delimiter), and
any back-off delays in half-duplex mode. Until then, the MAC does not accept the data received from MTL by
de-asserting the ready signal.

After the EOF (end of frame) is transmitted to the MAC, the MAC completes the normal transmission and yields the
Transmit Status to the MTL. If a normal collision (in half-duplex mode) occurs during transmission, the MAC makes
valid the Transmit Status in the MTL. It then accepts and drops all further data until the next SOF is received. The
MTL block should retransmit the same frame from SOF upon observing a retry request (in the Status) from the
MAC.

The MAC issues an underflow status if the MTL is not able to provide the data continuously during transmission.
During the normal transmission of a frame from MTL, if the MAC receives an SOF without getting an EOF for the
previous frame, it ignores the SOF and considers the new frame as a continuation of the previous one.

10.2.1.1 Transmit Flow Control

In full-duplex mode, when the Transmit Flow Control Enable bit (TFE bit in the Flow Control Register) is set to 1,
the MAC will generate and send a pause frame, as needed. The pause frame is added and transmitted together
with the calculated CRC. The generation of pause frames can be initiated in two ways.

Espressif Systems 223 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

When the application sets the Flow Control Busy bit (FCB bit in the Flow Control Register) to 1, or when the Rx
FIFO is full, a pause frame is transmitted.

¢ |f an application has requested flow control by setting the FCB bit in the Flow Control Register to 1, the MAC
will generate and send a single pause frame. The pause time value in the generated frame is the pause time
value programmed in the Flow Control Register. To extend or end the pause time before the time specified
in the previously transmitted pause frame, the application program must configure the pause time value in
the Flow Control Register to the appropriate value and, then, request another pause frame transmission.

¢ [f the application has requested flow control when the Rx FIFO is full, the MAC will generate and transmit a
pause frame. The value of the pause time of the generated frame is the pause time value programmed in
the Flow Control Register. If the Rx FIFO remains full during the configurable interval, which is determined
by the Pause Low Threshold bit (PLT) in the Flow Control Register before the pause time expires, a second
pause frame will be transmitted. As long as the Rx FIFO remains full, the process repeats itself. If the FIFO
is no longer full before the sample time, the MAC will send a pause frame with zero pause time, indicating to
the remote end that the Rx buffer is ready to receive the new data frame.

10.2.1.2 Retransmission During a Collision

In half-duplex mode, a collision may occur on the MAC line interface when frames are transmitted to the MAC. The
MAC may even give a status to indicate a retry before the end of the frame is received. The retransmission is then
enabled and the frame is popped out from the FIFO. When more than 96 bytes are transmitted to the MAC core,
the FIFO controller frees the space in the FIFO, allowing the DMA to push more data into FIFO. This means that
data cannot be retransmitted after the threshold is exceeded or when the MAC core indicates that a late collision
has occurred.

The MAC transmitter may abort the transmission of a frame because of collision, Tx FIFO underflow, loss of carrier,
jabber timeout, no carrier, excessive deferral, and late collision. When frame transmission is aborted because of
collision, the MAC requests retransmission of the frame.

10.2.2 Receive Operation

A receive operation is initiated when the MAC detects an SFD on the RMIl or MIl. The MAC strips the Preamble
and SFD before processing the frame. The header fields are checked for the filtering and the FCS (Frame Check
Sequence) field used to verify the CRC for the frame. The received frame is stored in a shallow buffer until the
address filtering is performed. The frame is dropped in the MAC if it fails the address filtering.

The frame received by the MAC will be pushed into the Rx FIFO. Once the FIFO status exceeds the Receive
Threshold, configured by the Receive Threshold Control (RTC) bit in the Operation Mode register, the DMA can
initiate a preconfigured burst transmission to the AHB interface.

In the default pass-through mode, when the FIFO receives a complete packet or 64 bytes configured by the RTC
bit in the Operation Mode Register, the data pops up and its availability is notified to the DMA. After the DMA
initiates the transmission to the AHB interface, the data transmission continues from the FIFO until the complete
packet is transmitted. Upon completing transmitting the EOF, the status word will pop up and be transmitted to
the DMA controller.

In the Rx FIFO Store-and-Forward mode (configured through the RSF or Receive Store and Forward bit in the
Operation Mode Register), only the valid frames are read and forwarded to the application. In the passthrough
mode, error frames are not discarded because the error status is received at the end of the frame. The start of
frame will have been read from the FIFO at that point.

Espressif Systems 224 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

10.2.2.1 Reception Protocol

After the receive module receives the packets, the Preamble and SFD of the received frames are removed. When
the SFD is detected, the MAC starts sending Ethernet frame data to the Rx FIFO, starting at the first byte (destination
address) following the SFD.

If the received frame length/type is less than 0x600 and the automatic CRC/Pad removal option is programmed for
the MAC, the MAC will send frame data to the Rx FIFO (the amount of data does not exceed the number specified
in the length/type field). Then MAC begins discarding the remaining section, including the FCS field. If the frame
length/type is greater than, or equal to, 0x600, the MAC will send all received Ethernet frame data to the Rx FIFO,
regardless of the programmed value of the automatic CRC removal option. By default, the MAC watchdog timer
is enabled, meaning that frames, including DA, SA, LT, data, pad and FCS, which exceed 2048 bytes, are cut off.
This function can be disabled by programming the Watchdog Disable (WD) bit in the MAC Configuration Register.
However, even if the watchdog timer is disabled, frames longer than 16 KB will be cut off and the watchdog timeout
status will be given.

10.2.2.2 Receive Frame Controller

If the RA (Receive All) bit in the MAC Frame Filter Register is reset, the MAC will filter frames based on the destination
and source addresses. If the application decides not to receive any bad frames, such as runt frames and CRC
error frames, another level of filtering is needed. When a frame fails the filtering, the frame is discarded and is not
transmitted to the application. When the filter parameters are changed dynamically, if a frame fails the DA and SA
filterings, the remaining part of the frame is discarded and the Receive Status word is updated immediately and,
therefore, the zero frame length bit, CRC error bit, and runt frame error bit are set to 1. This indicates that the
frame has failed the filtering.

10.2.2.3 Receive Flow Control

The MAC will detect the received pause frame and pause transmission of frames for a specified delay within the
received pause frame (in full-duplex mode only). The Pause Frame Detect Function can be enabled or disabled
by the RFCE (Receive Flow Control Enable) bit in the Flow Control Register. When receive flow control is enabled,
it starts monitoring whether the destination address of the received frame matches the multicast address of the
control frame (0x0180 C200 0001). If a match is detected (i.e. the destination address of the received frame
matches the destination address of the reserved control frame), the MAC will determine whether to transmit the
received control frame to the application, according to the PCF (Pass Control Frames) bit in the Frame Filter
Register.

The MAC will also decode the type, the opcode, and the pause timer field of the Receive Control Frame. If the value
of the status byte counter is 64 bits and there are no CRC errors, the MAC transmitter will halt the transmission of
any data frame. The duration of the pause is the decoded pause time value multiplied by the interval (which is 64
bytes for both 10 Mbit/s and 100 Mb/s modes). At the same time, if another pause frame of zero pause time is
detected, the MAC wiill reset the pause time to manage the new pause request.

If the type field (0x8808), the opcode (0x00001), and the byte length (64 bytes) of the received control frame are not
0x8808, 0x00001, and 64 bytes, respectively, or if there is a CRC error, the MAC will not generate a pause.

If a pause frame has a multicast destination address, the MAC filters the frame, according to the address match-
ing.

For pause frames with a unicast destination address, the MAC checks whether the DA matches the content of the

Espressif Systems 225 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

EMACADDRO Register, and whether the Unicast Pause Frame Detect (UPFD) bit in the Flow Control Register is
set to 1. The Pass Control Frames (PCF) bits in the Frame Filter Register [7:6] control the filtering of frames and
addresses.

10.2.2.4 Reception of Multiple Frames

Since the status is available immediately after the data is received. Frames can be stored there, as long as the
FIFO is not full.

10.2.2.5 Error Handling

If the Rx FIFO is full before receiving the EOF data from the MAC, an overflow will be generated and the entire
frame will be discarded. In fact, status bit RDESO[11] will indicate that this frame is partial due to an overflow, and
that it should be discarded.

If the function that corresponds to the Flush Transmit FIFO (FTF) bit and the Forward Undersized Good Frames
(FUGF) bit in the Operation Mode Register is enabled, the Rx FIFO can filter error frames and runt frames. If the re-
ceive FIFO is configured to operate in store-and-forward mode, all error frames will be filtered and discarded.

In passthrough mode, if a frame’s status and length are available when reading a SOF from the Rx FIFO, the entire
error frame can be discarded. DMA can clear the error frame being read from the FIFO by enabling the Receive
Frame Clear bit. The data transmission to the application (DMA) will then stop, and the remaining frames will be
read internally and discarded. If FIFO is available, the transmission of the next frame will be initiated.

10.2.2.6 Receive Status Word

After receiving the Ethernet frames, the MAC outputs the receive status to the application. The detailed description
of the receive status is the same as that which is configured by bit [31:0] in RDESO.

10.3 MAC Interrupt Controller

The MAC core can generate interrupts due to various events.

The interrupt register bits only indicate various interrupt events. To clear the interrupts, the corresponding status
register and other registers must be read. An Interrupt Status Register describes the events that prompt the MAC
core to generate interrupts. Each interrupt event can be prevented by setting the corresponding mask bit in the
Interrupt Mask Register to 1. For example, if bit3 of the interrupt register is set high, it indicates that a magic packet
or Wake-on-LAN frame has been received in Power-down mode. The PMT Control and Status register must be
read to clear this interrupt event.

10.4 MAC Address Filtering

Address filtering will check the destination and source addresses of all received frames and report the address
filtering status accordingly. For example, filtered frames can be identified either as multicast or broadcast.The
address check, then, is based on the parameters selected by the application (Frame Filter Registers).

Physical (MAC) addresses are used for address checking during address filtering.
10.4.1 Unicast Destination Address Filtering

The MAC supports up to 8 MAC addresses for perfect filtering of unicast addresses. If a perfect filtering is selected
(by resetting bit[1] in the Frame Filter Register), the MAC compares all 48 bits of the received unicast address with

Espressif Systems 226 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

the programmed MAC address to determine if there is a match. By default, EMACADDRO is always enabled, and
the other addresses (EMACADDRO ~ EMACADDRY) are selected by a separate enable bit. When the individual
bytes of the other addresses (EMACADDRO ~ EMACADDRY) are compared with the DA bytes received, the latter
can be masked by setting the corresponding Mask Byte Control bit in the register to 1. This facilitates the DA
group address filtering.

10.4.2 Multicast Destination Address Filtering

The MAC can be programmed to pass all multicast frames by setting the Pass All Multicast (PAM) bit in the Frame
Filter Register to 1. If the PAM bit is reset, the MAC wiill filter multicast addresses, according to Bit[2] in the Frame
Filter Register.

In perfect filtering mode, the multicast address is compared with the programmed MAC Destination Address Reg-
isters EMACADDRO ~ EMACADDRY). Group address filtering is also supported.

10.4.3 Broadcast Address Filtering

The MAC does not filter any broadcast frames in the default mode. However, if the MAC is programmed to reject
all broadcast frames, which can happen by setting the Disable Broadcast Frames (DBF) bit in the Frame Filter
Register to 1, all broadcast frames will be discarded.

10.4.4 Unicast Source Address Filtering

The MAC may also perform a perfect filtering based on the source address field of the received frame. By default,
the Address Filtering Module (AFM) compares the Source Address (SA) field with the values programmed in the
SA register. By setting Bit[30] in the SA register to 1, the MAC Address Register (EMACADDRO - EMACADDRY)
can be configured to contain SA, instead of Destination Address (DA), for filtering. Group filtering with SA is also
supported. If the Source Address Filter (SAF) enable bit in the Frame Filter Register is set to 1, the MAC discards
frames that do not pass the SA filtering. Otherwise, the result of SA filtering is given as a status bit in the Receive
Status word (Please refer to Table 10-9).

When the SAF enable bit is set to 1, the result of the SA filtering and DA filtering is AND’ed to determine whether
or not to forward the frame. Any frame that fails to pass will be discarded. Frames need to pass both filterings in
order to be forwarded to the application.

10.4.5 Inverse Filtering Operation
For both destination address (DA) and source address (SA) filtering, you can invert the results matched through the
filtering at the final output. The inverse filtering of DA and SA are controlled by the DAIF and SAIF bits, respectively,
in the Frame Filter Register. The DAIF bit applies to both unicast and multicast DA frames. When DAIF is set to 1,
the result of unicast or multicast destination address filtering will be inverted. Similarly, when the SAIF bit is set to
1, the result of unicast SA filtering is reversed.

The following two tables summarize the destination address and source address filtering, based on the type of the
frames received.

Table 10-1. Destination Address Filtering

Frame Type | PM | PF DAIF | PAM | DB DA Filter Result
1 X X X X Pass
Broadcast 0 X X X 0 Pass
0 X X X 1 Fail
1 X X X X All frames pass.
EsHrisastsystems 227 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Frame Type | PM PF DAIF | PAM | DB DA Filter Result
0 X 0 X X Pass when results of perfect/group filtering match.
0 X 1 X X Fail when results of perfect/group filtering match.
0 1 0 X X Pass when results of perfect/group filtering match.
0 1 1 X X Fail when results of perfect/group filtering match.
1 X X X X All frames pass.
X X X 1 X All frames pass.
0 X 0 0 X Pass when results of perfect/group filtering match and
pause control frame is discarded, if PCF = Ox.
. Pass when results of perfect/group filtering match and
Multicast 0 1 0 0 X o)
pause control frame is discarded, if PCF = Ox.
0 X] 0 X Fail when results of perfect/group filtering match and
pause control frame is discarded, if PCF = Ox.
0 ’] 0 X Fail when results of perfect/group filtering match and
pause control frame is discarded, if PCF = Ox.

The filtering parameters in the MAC Frame Filter Register described in Table 10-1 are as follows.

Parameter name:
PM: Pass All Multicast

PF: Perfect Filter

Parameter setting:
1. Set
0: Cleared

DAIF: Destination Address Inverse Filtering
PAM: Pass All Multicast
DB: Disable Broadcast Frames

Table 10-2. Source Address Filtering

Frame Type PM | SAIF | SAF | Source Address Filter Operation
1 X X Pass all frames
0 0 0 Pass when results of perfect/group filtering match. Frames not passed are
not discarded.
0 ’ 0 Fail when results of perfect/group filtering match. Frames not passed are
Unicast not discarded.
0 0 ’ Pass when results of perfect/group filtering match. Frames not passed are
discarded.
0 ’ ’ Fail when results of perfect/group filtering match. Frames not passed are

discarded.

The filtering parameters in the MAC Frame Filter Register described in Table 10-2 are as follows.

Parameter name:
PM: Pass All Multicast
SAF: Source Address Filtering
SAIF: Source Address Inverse Filtering X: Don’t care

Parameter setting:
1. Set
0: Cleared

10.4.6 Good Transmitted Frames and Received Frames
A frame successfully transmitted is considered a "good frame”. In other words, a transmitted frame is considered

to be good, if the frame transmission is not aborted due to the following errors:

Espressif Systems

228 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Jabber timeout

e No carrier or loss of carrier

Late collision
® Frame underflow
e Excessive deferral
e Excessive collision
The received frames are considered "good frames”, if there are not any of the following errors:

e CRC error

Runt frames (frames shorter than 64 bytes)

Alignment error (in 10/100 Mbps modes only)

Length error (non-type frames only)
® Frame size over the maximum size (for non-type frames over the maximum frame size only)
e MII_RXER input error

The maximum frame size depends on the frame type:
* The maximum size of untagged frames = 1518 bytes

e The maximum size of VLAN frames = 1522 bytes

10.5 EMAC_MTL (MAC Transaction Layer)

The MAC Transaction Layer provides FIFO memory to buffer and regulates the frames between the application
system memory and the MAC. It also enables the data to be transmitted between the application clock domain
and the MAC clock domains. The MTL layer has two data paths, namely the Transmit path and the Receive path.
The data path for both directions is 32-bit wide and operates with a simple FIFO protocol.

10.6 PHY Interface

The DMA and the Host driver communicate through two data structures:
e Control and Status Registers (CSR)
e Descriptor lists and data buffers

For details please refer to Register Summary and Linked List Descriptors.

10.6.1 MIl (Media Independent Interface)

Media Independent Interface (MIl) defines the interconnection between MAC sublayers and PHYs at the data
transmission rate of 10 Mbit/s and 100 Mbit/s.

10.6.1.1 Interface Signals Between MIl and PHY

Interface signals between MIl and PHY are shown in Figure 10-3.

Espressif Systems 229 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

'« TXCLK

TXD[3:0] >

= TX_EN)

'« BXCIK

< RXD[3:0]

RMII « RX DV External
Bl IF PHY

e CRS

e coL

_ MDC R

« MDO

Figure 10-3. MIl Interface

MIl Interface Signal Description:

MII_TX_CLK: TX clock signal. This signal provides the reference timing for TX data transmission. The fre-
quencies are divided into two types: 2.5 MHz at a data transmission rate of 10 Mbit/s, and 25 MHz at 100
Mbit/s.

MII_TXD[3:0]: Transmit data signal in groups of four, syn-driven by the MAC sub-layer, and valid only when
the MII_TX_EN signal is valid. MII_TXD|Q] is the lowest significant bit and MII_TXD[3] is the highest significant
bit. When the signal MII_TX_EN is pulled low, sending data does not have any effect on the PHY.

MII_TX_EN: Transmit data enable signal. This signal indicates that the MAC is currently sending nibbles (4
bits) for the MIl. This signal must be synchronized with the first nibble of the header (MII_TX_CLK) and must
be synchronized when all nibbles to be transmitted are sent to the M.

MII_RX_CLK: RX clock signal. This signal provides the reference timing for RX data transmission. The
frequencies are divided into two types: 2.5 MHz at the data transmission rate of 10 Mbit/s, and 25 MHz at
100 Mbit/s.

MII_RXDI[3:0]: Receive data signal in groups of four, syn-driven by the PHY, and valid only when MII_RX_DV
signal is valid. MII_RXD[O] is the lowest significant bit and MII_RXDI[3] is the highest significant bit. When
MII_RX_DV is disabled and MII_RX_ER is enabled, the specific MII_RXD[3:0] value represents specific infor-
mation from the PHY.

MII_RX_DV: Receive data valid signal. This signal indicates that the PHY is currently receiving the recovered
and decoded nibble that will be transmitted to the MIl. This signal must be synchronized with the first nibble
of the recovered frame (MII_RX_CLK) and remain synchronized till the last nibble of the recovered frame. This
signal must be disabled before the first clock cycle following the last nibble. In order to receive the frame
correctly, the MII_RX_DV signal must cover the frame to be received over the time range, starting no later
than when the SFD field appears.

MII_CRS: Carrier sense signal. When the transmitting or receiving medium is in the non-idle state, the signal
is enabled by the PHY. When the transmitting or receiving medium is in the idle state, the signal is disabled by
the PHY. The PHY must ensure that the MII_CRS signal remains valid under conflicting conditions. This signal
does not need to be synchronized with the TX and RX clocks. In full-duplex mode, this signal is insignificant.

MII_COL: Collision detection signal. After a collision is detected on the medium, the PHY must immedi-

Espressif Systems 230 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

ately enable the collision detection signal, and the collision detection signal must remain active as long as a
condition for collision exists. This signal does not need to be synchronized with the TX and RX clocks. In
full-duplex mode, this signal is meaningless.

¢ MII_RX_ER: Receive error signal. The signal must remain for one or more cycles (MIl_RX_CLK) to indicate to
the MAC sublayer that an error has been detected somewhere in the frame.

e MDIO and MDC: Management Data Input/Output and Management Data Clock. The two signals consti-
tute a serial bus defined for the Ethernet family of IEEE 802.3 standards, used to transfer control and data
information to the PHY, see section Station Management Agent (SMA) Interface.

10.6.1.2 MIl Clock

In MIl mode, there are two directions of clock, Tx and Rx clocks in the interface between MIl and the PHY.
MII_TX_CLK is used to synchronize the TX data, and MII_RX_CLK is used to synchronize the RX data. The
MII_RX_CLK clock is provided by the PHY. The MII_TX_CLK is provided by the chip’s internal PLL or external
crystal oscillator. For details regarding Figure 10-4, please refer to the clock-related registers in Register Sum-

mary.
< Clk tx > < o Clk tx MIl TX CLK
Tx T -
TXMII >
P > < clk rx MIl_RX_CLK
i ; Rx 1 -
Rx MIl E>geHr\r;aI
mdc >
'\cl;lég SMA | mdio >
MII_TX_CLK
i mac_portselect_o
| EMACCORE .
EwoaR 050
Figure 10-4. MIl Clock
10.6.2 RMII (Reduced Media-Independent Interface)
RMIl interface signals are shown in figure 10-5.
Espressif Systems 231 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

10.6.2.1

EMAC

RMII
IF

External
PHY

TXD[0]
TX_EN N

« BXD[1:0]

e RX_DV

: MDC .

e MDIO .

'« ckmi

i A i

0sC

Figure 10-5. RMII Interface

RMII Interface Signal Description

The Reduced Media-Independent Interface (RMII) specification reduces the number of pins between the microcon-

troller’s external peripherals and the external PHY at a data transmission rate of 10 Mbit/s or 100 Mbit/s. According

to the IEEE 802.3u standard, Mll includes 16 pins that contain data and control signals. The RMII specification

reduces 62.5% of the pins to the number of seven.

RMII has the following features:

e Support for an operating rate of 10 Mbit/s or 100 Mbit/s

e The reference clock frequency must be 50 MHz.

e The same reference clock must be provided externally both to the MAC and the external Ethernet PHY. It
provides independent 2-bit-wide Tx and Rx data paths.

10.6.2.2 RMII Clock

The configuration of the RMII clock is as figure 10-6 shows.

Espressif Systems

232

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

< Clk tx N clk_tx >
S YT
RMIL |
{ : IF .
|- clk rx o N . clk_rx > External
X H B
K Rx Ml < __RxRMII PHY
clk_mii_ g 4
MAC :
GoR SMA
: | EMACCORE mac portselect 0
EMAC-AHB lmac_speed_o
divider
2/20 osc

Figure 10-6. RMII Clock

10.6.3 Station Management Agent (SMA) Interface

As Figure 10-4 shows, the MAC uses MDC and MDIO signals to transfer control and data information to the PHY.
The maximum clock frequency is 2.5 MHz. The clock is generated from the application clock by a clock divider. The
PHY transmits register data during a write/read operation through the MDIO. This signal is driven synchronously

to the MDC clock.

Please refer to Register Summary for details about the EMII Address Register and the EMII Data Register.

10.6.4 RMII Timing

This section describes the RMII timing specifications.

v

Data2

Data3

Figure 10-7. RMII Timing - Receiving Data

Table 10-3. Timing Parameters - Receiving Data

Timing Parameters | Description | Min | Typ | Max | Unit

teve Clock cycle 20| 20 20 | ns

tsu Setup time 4 - -1 ns

ty Hold time 1 - - | ns

tip Input delay 3 5 8| ns
Espressif Systems 233

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

CYC

A

tOD

/N

Data2 = S

Data0 / Data1

Figure 10-8. RMII Timing - Transmitting Data

Table 10-4. Timing Parameters — Transmitting Data

Timing Parameters | Description | Min | Typ | Max | Unit
teve Clock cycle 20 20 20 | ns
tsu Setup time 4 - - | ns
ty Hold time - - | ns
top Output delay 6 9 12 | ns

10.7 Ethernet DMA Features

The DMA has independent Transmit and Receive engines, and a CSR (Control and Status Registers) space. The
Transmit engine transfers data from the system memory to the device port (MTL), while the Receive engine trans-
mits data from the device port to the system memory. The controller uses descriptors to efficiently move data
from source to destination with minimal Host CPU intervention. The DMA is designed for packet-oriented data
transmission, such as frames in Ethernet. The controller can be programmed to interrupt the Host CPU for normal

situations, such as the completion of frame transmission or reception, or when errors occur.

10.8 Linked List Descriptors

This section shows the structure of the linked lists and the descriptors. Every linked list consists of eight words.

10.8.1 Transmit Descriptors

The structure of the transmitter linked lists is shown in Figure 10-9. Table 10-5 to Table 10-8 show the description

of the linked lists.
31

0

k! o)
TDESO || Cirl[30:26] % Ctri[24:18] % Status|[16:7] “om | S
TDEST | 70 - Reserved Transmit Buffer Size[12:0]
TDES2 Buffer Address [31:0]

TDES3 Next Descriptor Address[31:0]

TDES4 Reserved

TDES5 Reserved

TDES6 Reserved

TDES7 Reserved

Espressif Systems

Figure 10-9. Transmit Descriptor

234

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Table 10-5. Transmit Descriptor 0 (TDESOQ)

Bits Name Description
When set, this bit indicates that the descriptor is owned by the DMA.
When this bit is reset, it indicates that the descriptor is owned by the

Host. The DMA clears this bit, either when it completes the frame
, transmission or when the buffers allocated to the descriptor are
[31] OWN: Own Bit o) ,
empty. The ownership bit of the First Descriptor of the frame should
be set after all subsequent descriptors belonging to the same frame
have been set. This avoids a possible race condition between fetch-

ing a descriptor and the driver setting an ownership bit.

When set, this bit sets the Transmit Interrupt (Register 5[0]) after the
[30] IC: Interrupt on Completion | present frame has been transmitted. This bit is valid only when the
last segment bit (TDESO[29)) is set.

When set, this bit indicates that the buffer contains the last segment
[29] LS: Last Segment of the frame. When this bit is set, the TBS1 or TBS2 field in TDEST
should have a non-zero value.

, When set, this bit indicates that the buffer contains the first segment
[28] FS: First Segment ‘ot
of a frame.

When this bit is set, the MAC does not append a cyclic redundancy
[27] DC: Disable CRC check (CRC) to the end of the transmitted frame. This is valid only
when the first segment (TDESO[28]) is set.

When set, the MAC does not automatically add padding to a frame
shorter than 64 bytes. When this bit is reset, the DMA automatically
[20] DP: Disable Pad adds padding and CRC to a frame shorter than 64 bytes, and the
CRC field is added despite the state of the DC (TDESO[27]) bit. This
is valid only when the first segment (TDESO[28]) is set.

[25] Reserved Reserved

When set, the MAC replaces the last four bytes of the transmitted
packet with recalculated CRC bytes. The host should ensure that
CRCR: CRC Replacement | the CRC bytes are present in the frame being transmitted from the

24
[24] Control Transmit Buffer. This bit is valid when the First Segment control bit
(TDESOQ[28]) is set. In addition, CRC replacement is done only when
Bit TDESQ[27] is set to 1.
Espressif Systems 235 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Bits Name Description

These bits control the checksum calculation and insertion. The fol-
lowing list describes the bit encoding:

e 2'b00: Checksum insertion is disabled.

e 2’b01: Only IP header checksum calculation and insertion are
enabled.

) e 2’b10: IP header checksum and payload checksum calcula-

CIC: Checksum Insertion .) .

[23:22] Control tion and insertion are enabled, but pseudo-header checksum
is not calculated in hardware.

e 2’b11: IP Header checksum and payload checksum calcula-
tion and insertion are enabled, and pseudo-header checksum
is calculated in hardware.

This field is valid when the First Segment control bit (TDES0[28]) is

set.

When set, this bit indicates that the descriptor list reached its final
[21] TER: Transmit End of Ring | descriptor. The DMA returns to the base address of the list, creating
a Descriptor Ring.

When set, this bit indicates that the second address in the descrip-
tor is the Next Descriptor address, rather than the second buffer
TCH: Second Address , .
[20] Chained address. When TDESQ[20] is set, TBS2 (TDES1[28:16)) is a “don’t
aine
care” value. TDES0[21] takes precedence over TDESO[20]. This bit
should be set to 1.

When set, these bits request the MAC to perform VLAN tagging or
untagging before transmitting the frames. If the frame is modified
for VLAN tags, the MAC automatically recalculates and replaces the
CRC bytes. The following list describes the values of these bits:
e 2’b00: Do not add a VLAN tag.
, e 2’b01: Remove the VLAN tag from the frames before trans-
VLIC: VLAN Insertion o i))
[19:18] mission. This option should be used only with the VLAN
Control
frames.
e 2’b10: Insert a VLAN tag with the tag value programmed in
VLAN Tag Inclusion or Replacement Register.
e 2’b1: Replace the VLAN tag in frames with the Tag value
programmed in VLAN Tag Inclusion or Replacement Regis-
ter. This option should be used only with the VLAN frames.

[17] Reserved Reserved

Espressif Systems 236 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Bits Name Description
When set, this bit indicates that the MAC transmitter detected an
error in the IP datagram header. The transmitter checks the header

length in the IPv4 packet against the number of header bytes re-
ceived from the application, and indicates an error status if there
is a mismatch. For IPv6 frames, a header error is reported if the
[16] IHE: IP Header Error .)
main header length is not 40 bytes. Furthermore, the Ethernet
Length/Type field value for an IPv4 or IPv6 frame must match the IP
header version received with the packet. For IPv4 frames, an error
status is also indicated if the Header Length field has a value less
than Ox5.
Indicates the logical OR of the following bits:

e TDESQ[14]: Jabber Timeout

e TDESO[13]: Frame Flush

e TDESOQ[11]: Loss of Carrier

e TDESOQ[10]: No Carrier
[15] ES: Error Summary e TDESQ[9]: Late Collision

e TDESQ[8]: Excessive Collision

e TDESOQ[2]: Excessive Deferral

e TDESO[1]: Underflow Error

e TDESOQ[16]: IP Header Error

e TDESOQ[12]: IP Payload Error
When set, this bit indicates the MAC transmitter has experienced a
[14] JT: Jabber Timeout jabber timeout. This bit is only set when EMACCONFIG_REG’s bit
EMACJABBER is not set.
When set, this bit indicates that the DMA or MTL flushed the frame
because of a software Flush command given by the CPU.

[13] FF: Frame Flushed

Espressif Systems 237 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Bits Name Description

When set, this bit indicates that MAC transmitter detected an error
in the TCP, UDP, or ICMP IP datagram payload.

The transmitter checks the payload length received in the IPv4 or
IPv6 header against the actual number of TCP, UDP, or ICMP packet
bytes received from the application, and issues an error status in

[12] IPE: IP Payload Error

case of a mismatch.

When set, this bit indicates that a loss of carrier occurred during
frame transmission (that is, the MII_CRS signal was inactive for one
[11] LOC: Loss of Carrier or more transmit clock periods during frame transmission). This is
valid only for the frames transmitted without collision when the MAC
operates in the half-duplex mode.

, When set, this bit indicates that the Carrier Sense signal from the
[10] NC: No Carrier , o
PHY was not asserted during transmission.

When set, this bit indicates that frame transmission is aborted be-
cause of a collision occurring after the collision window (64 byte-
9] LC: Late Collision times including Preamble in MIl mode, and 512 byte-times including
Preamble and Carrier Extension). This bit is not valid if the Under-
flow Error bit is set.

When set, this bit indicates that the transmission was aborted after
16 successive collisions while attempting to transmit the current

[8] EC: Excessive Collision frame. If bit EMACRETRY of EMACCONFIG_REG is set, this bit
is set after the first collision, and the transmission of the frame is
aborted.

When set, this bit indicates that the transmitted frame is a VLLAN-

[7] VF: VLAN Frame
type frame.

These status bits indicate the number of collisions that occurred
before the frame was transmitted. This count is not valid when the
[6:3] Ctrl/status -
Excessive Collisions bit (TDESQ[8]) is set. The core updates this

status field only in the half-duplex mode.

When set, this bit indicates that the transmission has ended be-
cause of excessive deferral of over 24,288 bit times (if Jumbo Frame
is enabled) if bit EMACDEFERRAL of EMACCONFIG_REG is set
high.

When set, this bit indicates that the MAC aborted the frame be-
cause the data arrived late from the Host memory. Underflow Er-

2] ED: Excessive Deferral

ror indicates that the DMA encountered an empty transmit buffer
1] UF: Underflow Error while transmitting the frame. The transmission process enters the
Suspended state and sets both Bit[5] in Transmit Underflow Regis-
ter (Status Register) and Bit[0] in Transmit Interrupt Register (Status
Register).

When set, this bit indicates that the MAC defers before transmission
[Q] DB: Deferred Bit because of the presence of a carrier. This bit is valid only in the half-
duplex mode.

Espressif Systems 238 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Table 10-6. Transmit Descriptor 1 (TDES1)

Bits Name Description

These bits request the MAC to add or replace the Source Address

field in the Ethernet frame with the value given in the MAC Address

O register. If the Source Address field is modified in a frame, the

MAC automatically recalculates and replaces the CRC bytes. The

Bit[31] specifies the MAC Address Register value (1 or 0) that is

used for Source Address insertion or replacement. The following

list describes the values of Bits[30:29]:

) e 2’b00: Do not include the source address.

[31:29] | SAIC: SA Insertion Control , '

e 2’b01: Include orinsert the source address. For reliable trans-
mission, the application must provide frames without source
addresses.

e 2’b10: Replace the source address. For reliable transmission,
the application must provide frames with source addresses.

e 2’b11: Reserved

These bits are valid when the First Segment control bit (TDES0[28])

is set.
[28:16] | Reserved Reserved
[15:13] | Reserved Reserved
[12:0] TBS1: Transmit Buffer 1 These bits indicate the data buffer byte size in bytes. If this field is O,
' Size the DMA ignores this buffer and uses Buffer 2 or the next descriptor.
Table 10-7. Transmit Descriptor 2 (TDES2)
Bits Name Description

[31:0] | Buffer 1 Address Pointer These bits indicate the physical address of Buffer 1.

Table 10-8. Transmit Descriptor 3 (TDESS3)

Bits Name Description

. This address contains the pointer to the physical memory where the
[31:0] | Next Descriptor Address

Next Descriptor is present.

10.8.2 Receive Descriptors
The structure of the receiver linked lists is shown in Figure 10-10. Table 10-9 to Table 10-13 provide the description
of the linked lists.

Espressif Systems 239 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

w
e

RDESO | £ Status[30:0]
RDES1 |& Reserved[30:16] [121”4] § Receive Buffer 1 Size[12:0]
RDES2 Buffer1 Address [31:0]
RDES3 Next Descriptor Address[31:0]
RDES4 Extended Status[31:0]
RDES5 Reserved
RDES6 Reserved
RDES7 Reserved
Figure 10-10. Receive Descriptor
Table 10-9. Receive Descriptor 0 (RDESO0)
Bits Name Description
When set, this bit indicates that the descriptor is owned by the DMA
of the DWC_gmac. When this bit is reset, it indicates that the de-
[31] OWN: Own Bit scriptor is owned by the Host. The DMA clears this bit either when
it completes the frame reception or when the buffers that are asso-
ciated with this descriptor are full.
130] AFM: Destination Address | When set, this bit indicates a frame that failed in the DA Filter in the
Filter Fail MAC.
These bits indicate the byte length of the received frame that was
transmitted to host memory. This field is valid when Last Descrip-
tor (RDESQ[8]) is set and either the Descriptor Error (RDESQ[14]) or
[29:16] | FL: Frame Length Overflow Error bits is reset. The frame length also includes the two
bytes appended to the Ethernet frame when IP checksum calcula-
tion (Type 1) is enabled and the received frame is not a MAC control
frame.
Indicates the logical OR of the following bits:
e RDESOQ[1]: CRC Error
e RDESOQ[3]: Receive Error
e RDESO[4]: Watchdog Timeout
e RDESOQ[6]: Late Collision
[15] ES: Error Summary i
e RDESOQ[7]: Giant Frame
e RDES4[4:3]: IP Header or Payload Error
e RDESQ[11]: Overflow Error
e RDESO[14]: Descriptor Error
This field is valid only when the Last Descriptor (RDESQ[8]) is set.
When set, this bit indicates a frame truncation caused by a frame
, that does not fit within the current descriptor buffers, and that the
[14] DE: Descriptor Error . .
DMA does not own the Next Descriptor. The frame is truncated.
This field is valid only when the Last Descriptor (RDESOQ[8]) is set.

Espressif Systems

240 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Bits

Name

Description

[13]

SAF: Source Address Filter
Fail

When set, this bit indicates that the SA field of frame failed the SA
Filter in the MAC.

[12]

LE: Length Error

When set, this bit indicates that the actual length of the frame re-
ceived and that the Length/Type field does not match. This bit is
valid only when the Frame Type (RDESO[5]) bit is reset.

[17]

OE: Overflow Error

When set, this bit indicates that the received frame was damaged
because of buffer overflow in MTL.

[10]

VLAN: VLAN Tag

When set, this bit indicates that the frame to which this descriptor
is pointing is a VLAN frame tagged by the MAC. The VLAN tagging
depends on checking the VLAN fields of the received frame based
on the Register (VLAN Tag Register) settings.

[9]

FS: First Descriptor

When set, this bit indicates that this descriptor contains the first
buffer of the frame. If the size of the first buffer is O, the second
buffer contains the beginning of the frame. If the size of the second
buffer is also 0O, the next Descriptor contains the beginning of the
frame.

(8]

LS: Last Descriptor

When set, this bit indicates that the buffers pointed to by this de-
scriptor are the last buffers of the frame.

[7]

IP Checksum Error (Type1),
or Giant Frame

When IP Checksum Engine (Type 1) is selected, this bit, if set, indi-
cates one of the following:
¢ The 16-bit IPv4 header checksum calculated by the core did
not match the received checksum bytes.
e The header checksum checking is bypassed for non-IPv4
frames.
Otherwise, this bit, when set, indicates the Giant Frame Status. Gi-
ant frames are larger than 1,518 bytes (or 1,522 bytes for VLAN or
2,000 bytes when Bit[27] of the MAC Configuration register is set),
normal frames and larger-than-9,018-byte (9,022-byte for VLAN)
frames when Jumbo Frame processing is enabled.

[6]

LC: Late Collision

When set, this bit indicates that a late collision has occurred while
receiving the frame in the half-duplex mode.

[5]

FT: Frame Type

When set, this bit indicates that the Receive Frame is an Ethernet-
type frame (the LT field is greater than, or equal to, 1,536). When
this bit is reset, it indicates that the received frame is an IEEE 802.3
frame. This bit is not valid for Runt frames which are less than 14
bytes.

[4]

RWT: Receive
Watchdog Timeout

When set, this bit indicates that the Receive Watchdog Timer has
expired while receiving the current frame and the current frame is
truncated after the Watchdog Timeout.

[3

RE: Receive Error

When set, this bit indicates that the MII_RXER signal is asserted
while MII_RXDV is asserted during frame reception.

2]

DE: Dribble Bit Error

When set, this bit indicates that the received frame has a non-
integer multiple of bytes (odd nibbles). This bit is valid only in the

MIl Mode.

Espressif Systems

241 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Bits Name Description
When set, this bit indicates that a Cyclic Redundancy Check (CRC)
[1] CE: CRC Error Error occurred on the received frame. This field is valid only when

the Last Descriptor (RDESQI[8)) is set.

When the IP Checksum Offload (Type 2) is present, this bit, when
set, indicates that the extended status is available in descriptor word
4 (RDES4). This is valid only when the Last Descriptor bit (RDESO[8])
is set. This bit is invalid when Bit 30 is set.

When IP Checksum Offload (Type 2) is present, this bit is set even

, when the IP Checksum Offload engine bypasses the processing of
Extended Status Available/ , ,
[0] the received frame. The bypassing may be because of a non-IP
Rx MAC Address ,

frame or an IP frame with a non-TCP/UDP/ICMP payload.

When the IPC Full Offload is not selected, this bit indicates an Rx
MAC Address status. When set, this bit indicates that the Rx MAC
Address registers value (1 to 15) matched the frame’s DA field.
When reset, this bit indicates that the Rx MAC Address Register
0 value matched the DA field.

Table 10-10. Receive Descriptor 1 (RDES1)

Bits Name Description

When set, this bit prevents setting the Status Register’'s RI bit
(CSR5[6)) for the received frame that ends in the buffer indicated
by this descriptor. This, in turn, disables the assertion of the inter-
rupt to Host because of the Rl for that frame.

[30:29] | Reserved Reserved

[28:16] | Reserved Reserved

When set, this bit indicates that the descriptor list reached its final
[15] RER: Receive End of Ring | descriptor. The DMA returns to the base address of the list, creating
a Descriptor Ring.

When set, this bit indicates that the second address in the descrip-
RCH: Second Address tor is the Next Descriptor address rather than the second buffer ad-
Chained dress. When this bit is set, RBS2 (RDES1[28:16]) is a “don’t care”
value. RDES1[15] takes precedence over RDES1[14].

[13] Reserved Reserved

[31] Ctrl

[14]

Indicates the first data buffer size in bytes. The buffer size must be a
multiple of 4, even if the value of RDES2 (buffer1 address pointer) is
[12:0] RBS1: Receive Buffer 1 not aligned to bus width. When the buffer size is not a multiple of 4,
Size the resulting behavior is undefined. If this field is 0, the DMA ignores
this buffer and uses Buffer 2 or the next descriptor depending on

the value of RCH (Bit[14)).

Espressif Systems 242 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Table 10-11. Receive Descriptor 2 (RDES2)

Bits Name Description
[31:0] | Buffer 1 Address Pointer These bits indicate the physical address of Buffer 1.
Table 10-12. Receive Descriptor 3 (RDES3)
Bits Name Description
) This address contains the pointer to the physical memory where the
[31:0] | Next Descriptor Address _ _
Next Descriptor is present.
Table 10-13. Receive Descriptor 4 (RDES4)
Bits Name Description
[31:28] | Reserved Reserved
[27:26] | Reserved Reserved
[25] Reserved Reserved
[24] Reserved Reserved
[23:21] | Reserved Reserved
[20:18] | Reserved Reserved
[17] Reserved Reserved
[16] Reserved Reserved
[15] Reserved Reserved
[14] Reserved Reserved
[13] Reserved Reserved
[12] Reserved Reserved
These bits are encoded to give the type of the message received.
e 3’p0000: Reserved
e 3'p0001: SYNC (all clock types)
e 3’b0010: Follow_Up (all clock types)
e 3'b0011: Delay_Req (all clock types)
e 3'p0100: Delay_Resp (all clock types)
e 3'p0101: Pdelay_Req (in peer-to-peer transparent clock)
[11:8] Message Type ,
e 3’b0110: Pdelay_Resp (in peer-to-peer transparent clock)
e 3'00111: Pdelay_Resp_Follow_Up (in peer-to-peer transpar-
ent clock)
e 3'b1000: Announce
e 3'b1001: Management
e 3’b1010: Signaling
® 3'01011-3’b1110: Reserved
e 3’b1111: Reserved
When set, this bit indicates that the received packet is an IPv6
[7] IPv6 Packet Received packet. This bit is updated only when Bit[10] (IPC) of Register (MAC
Configuration Register) is set.

Espressif Systems

243 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Bits Name Description
When set, this bit indicates that the received packet is an IPv4
[6] IPv4 Packet Received packet. This bit is updated only when Bit[10] (IPC) of Register (MAC

Configuration Register) is set.

When set, this bit indicates that the checksum offload engine is
bypassed.

When set, this bit indicates that the 16-bit IP payload checksum
(that is, the TCP, UDP, or ICMP checksum) that the core calculated
does not match the corresponding checksum field in the received
segment. It is also set when the TCP, UDP, or ICMP segment length

5] IP Checksum Bypassed

[4] IP Payload Error

does not match the payload length value in the IP Header field. This
bit is valid when either Bit 7 or Bit 6 is set.

When set, this bit indicates that either the 16-bit IPv4 header check-
sum calculated by the core does not match the received checksum
bytes, or the IP datagram version is not consistent with the Ethernet
Type value. This bit is valid when either Bit[7] or Bit[6] is set.

[3] IP Header Error

These bits indicate the type of payload encapsulated in the IP data-
gram processed by the Receive Checksum Offload Engine (COE).
The COE also sets these bits to 2’b00 if it does not process the IP
datagram’s payload due to an IP header error or fragmented IP.

e 3'b000: Unknown or did not process IP payload
3’b001: UDP
3’b010: TCP
3’b011: ICMP

e 3’bixx: Reserved
This bit is valid when either Bit[7] or Bit[6] is set.

[2:0] IP Payload Type

10.9 Register Summary
Note that specific fields or bits of a given register may have different access attributes. Below is the list of all
attributes together with the abbreviations used in register descriptions.

e Read Only (RO)

e Write Only (WO)

e Read and Write (R/W)

e Read, Write, and Self Clear (R/W/SC)

¢ Read, Self Set, and Write Clear (R/SS/WC)

e Read, Write Set, and Self Clear (R/WS/SC)

e Read, Self Set, and Self Clear or Write Clear (R/SS/SC/WC)
e Read Only and Write Trigger (RO/WT)

e Read, Self Set, and Read Clear (R/SS/RC)

e Read, Write, and Self Update (R/W/SU)

e Latched-low (LL)

Espressif Systems 244 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

e Latched-high (LH)

address

Name Description Address Access
DMA configuration and control registers
DMABUSMODE_REG Bus mode configuration Ox3FF69000 | R/WS/SC
DMATXPOLLDEMAND_REG Pull demand for data transmit Ox3FF69004 | RO/WT
DMARXPOLLDEMAND_REG Pull demand for data receive Ox3FF69008 | RO/WT
Base address of the first receive descrip-
DMARXBASEADDR_REG ; Ox3FF6900C | R/W
or
Base address of the first transmit de-
DMATXBASEADDR_REG , Ox3FF69010 | R/W
scriptor
State of interrupts, errors and other
DMASTATUS_REG Ox3FF69014 | R/SS/WC
events
Receive and Transmit operating modes
DMAOPERATION_MODE_REG Ox3FF69018 | R/SS/WC
and command
DMAIN_EN_REG Enable / disable interrupts Ox3FF6901C | R/W
Missed Frame and Buffer Overflow
DMAMISSEDFR_REG , Ox3FF69020 | R/W
Counter Register
DMARINTWDTIMER_REG Watchdog timer count on receive Ox3FF69024 | R/W
DMATXCURRDESC_REG Pointer to current transmit descriptor Ox3FF69048 | RO
DMARXCURRDESC_REG Pointer to current receive descriptor Ox3FF6904C | RO
DMATXCURRADDR_BUF_REG Pointer to current transmit buffer Ox3FF69050 | RO
DMARXCURRADDR_BUF_REG Pointer to current receive buffer Ox3FF69054 | RO
MAC configuration and control registers
EMACCONFIG_REG MAC configuration Ox3FF6A000 | R/W
EMACFF_REG Frame filter settings Ox3FF6A004 | R/W
EMACGMIIADDR_REG PHY configuration access Ox3FF6A010 | R/WS/SC
EMACMIIDATA_REG PHY data read write Ox3FF6A014 | R/W
R/WS/SC(FCB)
EMACFC_REG frame flow control Ox3FFB6A018
R/W(BPA)
EMACDEBUG_REG Status debugging bits Ox3FF6A024 | RO
PMT_RWUFFR_REG Remote Wake-Up Frame Filter Ox3FFBA028 | RO
PMT_CSR_REG PMT Control and Status Ox3FF6A02C | RO
EMACLPI_CSR_REG LPI Control and Status Ox3FF6A030 | RO
EMACLPITIMERSCONTROL_REG| LPI Timers Control Ox3FF6A034 | RO
EMACINTS_REG Interrupt status Ox3FFB6A038 | RO
EMACINTMASK_REG Interrupt mask Ox3FF6A03C | R/W
Upper 16 bits of the first 6-byte MAC ad-
EMACADDROHIGH_REG Ox3FFB6A040 | R/W
dress
Lower 32 bits of the first 6-byte MAC ad-
EMACADDROLOW_REG Ox3FF6A044 | R/W
dress
MAC address filtering and upper 16 bits
EMACADDR1HIGH_REG Ox3FF6A048 | R/W
of the second 6-byte MAC address
Lower 32 bits of the second 6-byte MAC
EMACADDR1LOW_REG Ox3FF6A04C | R/W

Espressif Systems

245
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Name Description Address Access
MAC address filtering and upper 16 bits
EMACADDR2HIGH_REG , Ox3FF6A050 | R/W
of the third 6-byte MAC address
Lower 32 bits of the third 6-byte MAC
EMACADDR2LOW_REG Ox3FF6A054 | R/W
address
MAC address filtering and upper 16 bits
EMACADDR3HIGH_REG Ox3FFBA058 | R/W
of the fourth 6-byte MAC address
Lower 32 bits of the fourth 6-byte MAC
EMACADDRSLOW_REG Ox3FFBA05C | R/W
address
MAC address filtering and upper 16 bits
EMACADDR4HIGH_REG , Ox3FFBA060 | R/W
of the fifth 6-byte MAC address
Lower 32 bits of the fifth 6-byte MAC ad-
EMACADDR4LOW_REG Ox3FF6A06B4 | R/W
dress
MAC address filtering and upper 16 bits
EMACADDRSHIGH_REG , Ox3FF6A068 | R/W
of the sixth 6-byte MAC address
Lower 32 bits of the sixth 6-byte MAC
EMACADDR5LOW_REG Ox3FF6A06C | R/W
address
MAC address filtering and upper 16 bits
EMACADDRGBHIGH_REG Ox3FF6A070 | R/W
of the seventh 6-byte MAC address
Lower 32 bits of the seventh 6-byte
EMACADDR6LOW_REG Ox3FF6A074 | R/W
MAC address
MAC address filtering and upper 16 bits
EMACADDR7HIGH_REG , Ox3FFBA078 | R/W
of the eighth 6-byte MAC address
Lower 32 bits of the eighth 6-byte MAC
EMACADDR7LOW_REG Ox3FF6A07C | R/W
address
EMACCSTATUS_REG Link communication status Ox3FF6A0D8 | RO
EMACWDOGTO_REG Watchdog timeout control Ox3FFGAODC | R/W
Clock configuration registers
EMAC_EX_CLKOUT_CONF_REG | RMII clock divider setting Ox3FF69800 | R/W
RMII clock half and whole divider set-
EMAC_EX_OSCCLK_CONF_REG y Ox3FF69804 | R/W
ings
Clock enable and external / internal
EMAC_EX_CLK_CTRL_REG _ Ox3FF69808 | R/W
clock selection
PHY type and SRAM configuration registers
EMAC_EX_PHYINF_CONF_REG | Selection of Mil / RMII phy Ox3FF6980C | R/W
EMAC_PD_SEL_REG Ethernet RAM power-down enable Ox3FF69810 | R/W

10.10 Registers

The addresses in parenthesis besides register names are the register addresses relative to the EMAC base ad-
dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 10.9 Register Summary.

Note: The value of all reset registers must be set to the reset value.

Espressif Systems

246
Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.1. DMABUSMODE_REG (0x0000)

A S
& &%@ > o < N & <& <
5 SRS NagRe N 6 &7 @7
é@é 5 \?YQQ C%/%Q, 5 &? S O®<§> & o v;@ S
& NN & SR & © & N
‘31 27|26|25|24|23|22 17|16|15 14|l3 3|7|6 2|1|0‘
\o 0 0 o 0|o|o|o|o| 0x01 |O|O><O| 0x01 |o| 0x00 |0|1\Reset

DMAMIXEDBURST When this bit is set high and the FB(FIXES_BURST) bit is low, the AHB master
interface starts all bursts of a length more than 16 with INCR (undefined burst), whereas it reverts
to fixed burst transfers (INCRx and SINGLE) for burst length of 16 and less. (R/W)

DMAADDRALIBEA When this bit is set high and the FB bit is 1, the AHB interface generates all bursts
aligned to the start address LS bits. If the FB bit is O, the first burst (accessing the start address of
data buffer) is not aligned, but subsequent bursts are aligned to the address. (R/W)

PBLX8_MODE When set high, this bit multiplies the programmed PBL(PROG_BURST_LEN) value
(Bits[22:17] and Bits[13:8]) eight times. Therefore, the DMA transfers the data in 8, 16, 32, 64,
128, and 256 beats depending on the PBL value. (R/W)

USE_SEP_PBL When set high, this bit configures the Rx DMA to use the value configured in
Bits[22:17] as PBL. The PBL value in Bits[13:8] is applicable only to the Tx DMA operations. When
reset to low, the PBL value in Bits[13:8] is applicable for both DMA engines. (R/W)

RX_DMA_PBL This field indicates the maximum number of beats to be transferred in one Rx DMA
transaction. This is the maximum value that is used in a single block Read or Write.The Rx DMA
always attempts to burst as specified in the RPBL(RX_DMA_PBL) bit each time it starts a burst
transfer on the host bus. You can program RPBL with values of 1, 2, 4, 8, 16, and 32. Any other
value results in undefined behavior. This field is valid and applicable only when USP(USE_SEP_PBL)
is set high. (R/W)

FIXED_BURST This bit controls whether the AHB master interface performs fixed burst transfers or
not. When set, the AHB interface uses only SINGLE, INCR4, INCR8, or INCR16 during start of
the normal burst transfers. When reset, the AHB interface uses SINGLE and INCR burst transfer
operations. (R/W)

PRI_RATIO These bits control the priority ratio in the weighted round-robin arbitration between the
Rx DMA and Tx DMA. These bits are valid only when Bit 1 (DA) is reset. The priority ratio Rx:Tx
represented by each bit: (R/W)

¢ 2’000 — 1: 1
o 2001 —2: 0
° 2b10—3: 1
o 2b11—4: 1

Continued on the next page...

Espressif Systems 247 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.1. DMABUSMODE_REG (0x0000)

Continued from the previous page...

PROG_BURST_LEN These bits indicate the maximum number of beats to be transferred in one DMA
transaction. If the number of beats to be transferred is more than 32, then perform the following
steps: 1. Set the PBLx8 mode; 2. Set the PBL. (R/W)

ALT_DESC_SIZE When set, the size of the alternate descriptor increases to 32 bytes. (R/W)

DESC_SKIP_LEN This bit specifies the number of Word to skip between two unchained descriptors.
The address skipping starts from the end of current descriptor to the start of next descriptor. When
the DSL(DESC_SKIP_LEN) value is equal to zero, the descriptor table is taken as contiguous by
the DMA in Ring mode. (R/W)

DMA_ARB_SCH This bit specifies the arbitration scheme between the transmit and receive paths.
1’b0: weighted round-robin with RX: TX or TX: RX, priority specified in PR (bit[15:14]); 1’b1 Fixed
priority (Rx priority to Tx). (R/W)

SW_RST When this bit is set, the MAC DMA Controller resets the logic and all internal registers of the
MAC. It is cleared automatically after the reset operation is complete in all of the ETH_MAC clock
domains. Before reprogramming any register of the ETH_MAC, you should read a zero (0) value in
this bit. (R/WS/SC)

Register 10.2. DMATXPOLLDEMAND_REG (0x0004)

E]

‘ 0x000000000 \ Reset

TRANS_POLL_DEMAND When these bits are written with any value, the DMA reads the current
descriptor to which the Register (Current Host Transmit Descriptor Register) is pointing. If that
descriptor is not available (owned by the Host), the transmission returns to the suspend state and
Bit[2] (TU) of Status Register is asserted. If the descriptor is available, the transmission resumes.

(ROMT)

Register 10.3. DMARXPOLLDEMAND_REG (0x0008)

E]

‘ 0x000000000 \ Reset

RECV_POLL_DEMAND When these bits are written with any value, the DMA reads the current de-
scriptor to which the Current Host Receive Descriptor Register is pointing. If that descriptor is
not available (owned by the Host), the reception returns to the Suspended state and Bit[7] (RU) of
Status Register is asserted. If the descriptor is available, the Rx DMA returns to the active state.

(ROMT)

Espressif Systems 248 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.4. DMARXBASEADDR_REG (0x000C)

E]

‘ 0x000000000 \ Reset

START_RECV_LIST This field contains the base address of the first descriptor in the Receive De-
scriptor list. The LSB Bits[1:0] are ignored and internally taken as all-zero by the DMA. Therefore,
these LSB bits are read-only. (R/W)

Register 10.5. DMATXBASEADDR_REG (0x0010)

E]

‘ 0x000000000 \ Reset

START_TRANS_LIST This field contains the base address of the first descriptor in the Transmit De-
scriptor list. The LSB Bits[1:0] are ignored and are internally taken as all-zero by the DMA. Therefore,
these LSB bits are read-only. (R/W)

Register 10.6. DMASTATUS_REG (0x0014)

& & S Q IR
& A N S Y R S
7 © & P7 (TP Fso S SO Fs S
S D s 52 K LU 5 LS E T W@ L
P ¥ p & Sl PO IS SYADRRIRY AP WP N
¢ S E & & & FFFF & FLLLLTLIETELE
‘31 30|29|28|27 26|25 23|22 20|19 17|16|15|14|13|12 ll|10|9|8|7|6|5|4|3|2|1|0‘
\o o|o|o|o o| ox0 | 0x0 | 0x0 |o|o|o|o|o o|0|o|o|o|o|o|o|o|o|o|o\Reset

EMAC_PMT_INT This bit indicates an interrupt event in the PMT module of the ETH_MAC. The soft-
ware must read the PMT Control and Status Register in the MAC to get the exact cause of interrupt
and clear its source to reset this bit to 1’b0. (RO)

Continued on the next page...

Espressif Systems 249 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.6. DMASTATUS_REG (0x0014)

Continued from the previous page...

ERROR_BITS This field indicates the type of error that caused a Bus Error, for example, error response
on the AHB interface. This field is valid only when Bit[13] (FBI) is set. This field does not generate
an interrupt. (RO)

e 3’'b000: Error during Rx DMA Write Data Transfer.

3’b011: Error during Tx DMA Read Data Transfer.

3’b100: Error during Rx DMA Descriptor Write Access.

3’b101: Error during Tx DMA Descriptor Write Access.

3’b110: Error during Rx DMA Descriptor Read Access.

3’b111: Error during Tx DMA Descriptor Read Access.

TRANS_PROC_STATE This field indicates the Transmit DMA FSM state. This field does not generate
an interrupt. (RO)

e 3'p000: Stopped. Reset or Stop Transmit Command issued.

e 3’'p001: Running. Fetching Transmit Transfer Descriptor.

e 3'b010: Reserved for future use.

e 3'b011: Running. Waiting for TX packets.

e 3’b100: Suspended. Receive Descriptor Unavailable.

e 3’0101: Running. Closing Transmit Descriptor.

* 3'0110: Reserved.

e 3’b111: Running. Transferring the TX packets data from transmit buffer to host memory.

RECV_PROC_STATE This field indicates the Receive DMA FSM state. This field does not generate
an interrupt. (RO)

e 3’'b000: Stopped. Reset or Stop Receive Command issued.

e 3’'p001: Running. Fetching Receive Transfer Descriptor.

e 3'b010: Reserved for future use.

e 3'p011: Running. Waiting for RX packets.

e 3’b100: Suspended. Receive Descriptor Unavailable.

e 3’b101: Running. Closing Receive Descriptor.

* 3'0110: Reserved.

e 3’b111: Running. Transferring the TX packets data from receive buffer to host memory.

Continued on the next page...

Espressif Systems 250 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.6. DMASTATUS_REG (0x0014)

Continued from the previous page...

NORM_INT_SUMM Normal Interrupt Summary bit value is the logical OR of the following bits when
the corresponding interrupt bits are enabled in Interrupt Enable Register:(R/SS/WC)

e Bit[0]: Transmit Interrupt.
e Bit[2]: Transmit Buffer Unavailable.
¢ Bit[6]: Receive Interrupt.

¢ Bit[14]: Early Receive Interrupt. Only unmasked bits affect the Normal Interrupt Summary bit.
This is a sticky bit and must be cleared (by writing 1 to this bit) each time a corresponding bit,
which causes NIS to be set, is cleared.

ABN_INT_SUMM Abnormal Interrupt Summary bit value is the logical OR of the following when the
corresponding interrupt bits are enabled in Interrupt Enable Register: (R/SS/WC)

e Bit[1]: Transmit Process Stopped.

¢ Bit[3]: Transmit Jabber Timeout.

¢ Bit[4]: Receive FIFO Overflow.

e Bit[5]: Transmit Underflow.

¢ Bit[7]: Receive Buffer Unavailable. Bit[8]: Receive Process Stopped.
¢ Bit[9]: Receive Watchdog Timeout.

e Bit[10]: Early Transmit Interrupt.

¢ Bit[13]: Fatal Bus Error. Only unmasked bits affect the Abnormal Interrupt Summary bit. This
is a sticky bit and must be cleared (by writing 1 to this bit) each time a corresponding bit,
which causes AlS to be set, is cleared.

EARLY_RECV_INT This bit indicates that the DMA filled the first data buffer of the packet. This bit is
cleared when the software writes 1 to this bit or when Bit[6] (RI) of this register is set (whichever
occurs earlier). (R/SS/WC)

FATAL_BUS_ERR_INT This bit indicates that a bus error occurred, as described in Bits [25:23]. When
this bit is set, the corresponding DMA engine disables all of its bus accesses. (R/SS/WC)

EARLY_TRANS_INT This bit indicates that the frame to be transmitted is fully transferred to the MTL
Transmit FIFO. (R/SS/WC)

RECV_WDT_TO When set, this bit indicates that the Receive Watchdog Timer expired while receiving
the current frame and the current frame is truncated after the watchdog timeout. (R/SS/WC)

Continued on the next page...

Espressif Systems 251 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.6. DMASTATUS_REG (0x0014)

Continued from the previous page...

RECV_PROC_STOP This bit is asserted when the Receive Process enters the Stopped state.
(R/SS/WC)

RECV_BUF_UNAVAIL This bit indicates that the host owns the Next Descriptor in the Receive List and
the DMA cannot acquire it. The Receive Process is suspended. To resume processing Receive
descriptors, the host should change the ownership of the descriptor and issue a Receive Poll
Demand command. If no Receive Poll Demand is issued, the Receive Process resumes when
the next recognized incoming frame is received. This bit is set only when the previous Receive
Descriptor is owned by the DMA. (R/SS/WC)

RECV_INT This bit indicates that the frame reception is complete. When reception is complete, the
Bit[31] of RDES1 (Disable Interrupt on Completion) is reset in the last Descriptor, and the specific
frame status information is updated in the descriptor. The reception remains in the Running state.
(R/SS/WC)

TRANS_UNDFLOW This bit indicates that the Transmit Buffer had an Underflow during frame trans-
mission. Transmission is suspended and an Underflow Error TDESO[1] is set. (R/SS/WC)

RECV_OVFLOW This bit indicates that the Receive Buffer had an Overflow during frame recep-
tion. If the partial frame is transferred to the application, the overflow status is set in RDESO[11].
(R/SS/WC)

TRANS_JABBER_TO This bit indicates that the Transmit Jabber Timer expired, which happens when
the frame size exceeds 2,048 (10,240 bytes when the Jumbo frame is enabled). When the Jabber
Timeout occurs, the transmission process is aborted and placed in the Stopped state. This causes
the Transmit Jabber Timeout TDESO[14] flag to assert. (R/SS/WC)

TRANS_BUF_UNAVAIL This bit indicates that the host owns the Next Descriptor in the Transmit
List and the DMA cannot acquire it. Transmission is suspended. Bits[22:20] explain the Transmit
Process state transitions. To resume processing Transmit descriptors, the host should change
the ownership of the descriptor by setting TDESO[31] and then issue a Transmit Poll Demand
command. (R/SS/WC)

TRANS_PROC_STOP This bit is set when the transmission is stopped. (R/SS/WC)

TRANS_INT This bit indicates that the frame transmission is complete. When transmission is com-
plete, Bit[31] (OWN) of TDESO is reset, and the specific frame status information is updated in the
descriptor. (R/SS/WC)

Espressif Systems 252 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.7. DMAOPERATION_MODE_REG (0x0018)

@ SR L LR S
) > PR SN <) A Q&
& PFPEETS & N

‘31 27|26|25|24|23|22|21|20|19 17|16 14|13|12 ll|10 9|8|7|6|

\o 0 0 o o|o|o|o|o|o|o|o| 0 | 0 |o| 0 | 0

DIS_DROP_TCPIP_ERR_FRAM When this bit is set, the MAC does not drop the frames which only
have errors detected by the Receive Checksum engine.When this bit is reset, all error frames are
dropped if the Fwd_Err_Frame bit is reset. (R/W)

RX_STORE_FORWARD When this bit is set, the MTL reads a frame from the Rx FIFO only after the
complete frame has been written to it. (R/W)

DIS_FLUSH_RECV_FRAMES When this bit is set, the Rx DMA does not flush any frames because
of the unavailability of receive descriptors or buffers. (R/W)

TX_STR_FWD When this bit is set, transmission starts when a full frame resides in the MTL Trans-
mit FIFO. When this bit is set, the TX_THRESH_CTRL values specified in TX_THRESH_CTRL are

ignored. (R/W)

FLUSH_TX_FIFO When this bit is set, the transmit FIFO controller logic is reset to its default values
and thus all data in the Tx FIFO is lost or flushed. This bit is cleared internally when the flushing
operation is complete. (R/WS/SC)

TX_THRESH_CTRL These bits control the threshold level of the MTL Transmit FIFO. Transmission
starts when the frame size within the MTL Transmit FIFO is larger than the threshold. In addition,
full frames with a length less than the threshold are also transmitted. These bits are used only
when TX_STR_FWD is reset. 3'b000: 64, 3'b001: 128, 3’b010: 192, 3'b011: 256, 3'b100: 40,
3'b101: 32, 3'b110: 24, 3'b111: 16. (R/W)

START_STOP_TRANSMISSION_COMMAND When this bit is set, transmission is placed in the Run-
ning state, and the DMA checks the Transmit List at the current position for a frame to be transmit-
ted. When this bit is reset, the transmission process is placed in the Stopped state after completing
the transmission of the current frame. (R/W)

FWD_ERR_FRAME When this bit is reset, the Rx FIFO drops frames with error status (CRC error,
collision error, giant frame, watchdog timeout, or overflow). (R/W)

FWD_UNDER_GF When set, the Rx FIFO forwards Undersized frames (that is, frames with no Error
and length less than 64 bytes) including pad-bytes and CRC.

DROP_GFRM When set, the MAC drops the received giant frames in the Rx FIFO, that is, frames that
are larger than the computed giant frame limit. (R/W)

Continued on the next page...

Espressif Systems 253 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.7. DMAOPERATION_MODE_REG (0x0018)

Continued from the previous page...

RX_THRESH_CTRL These two bits control the threshold level of the MTL Receive FIFO. Transfer (re-
quest) to DMA starts when the frame size within the MTL Receive FIFO is larger than the threshold.
2'b00: 64; 2’b01: 32; 2’b10: 96; 2’b11: 128. (R/W)

OPT_SECOND_FRAME When this bit is set, it instructs the DMA to process the second frame of the
Transmit data even before the status for the first frame is obtained. (R/W)

START_STOP_RX When this bit is set, the Receive process is placed in the Running state. The DMA
attempts to acquire the descriptor from the Receive list and processes the incoming frames.When
this bit is cleared, the Rx DMA operation is stopped after the transfer of the current frame. (R/W)

Espressif Systems 254 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.8. DMAIN_EN_REG (0x001C)

N Q\ég/& \§"o<b<</\>\(</o\(</§ 9<<’<</
‘31 17| 16 15 14 13 |12 11| 10 9 8 7 6 5 4 3 2 1 0 ‘

\oooooooooooooooooooo oooooooooooo\Reset

DMAIN_NISE When this bit is set, normal interrupt summary is enabled. When this bit is reset, normal
interrupt summary is disabled. This bit enables the following interrupts in Status Register: (R/W)

Bit[0]: Transmit Interrupt.

Bit[2]: Transmit Buffer Unavailable.

Bit[6]: Receive Interrupt.

Bit[14]: Early Receive Interrupt.

DMAIN_AISE When this bit is set, abnormal interrupt summary is enabled. When this bit is reset,
the abnormal interrupt summary is disabled. This bit enables the following interrupts in Status
Register:(R/W)

e Bit[1]: Transmit Process Stopped.
e Bit[3]: Transmit Jabber Timeout.

¢ Bit[4]: Receive Overflow.

e Bit[5]: Transmit Underflow.

¢ Bit[7]: Receive Buffer Unavailable.
¢ Bit[8]: Receive Process Stopped.
¢ Bit[9]: Receive Watchdog Timeout.
e Bit[10]: Early Transmit Interrupt.

e Bit[13]: Fatal Bus Error.

DMAIN_ERIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Early Receive
Interrupt is enabled. When this bit is reset, the Early Receive Interrupt is disabled. (R/W)

Continued on the next page...

Espressif Systems 255 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.8. DMAIN_EN_REG (0x001C)

Continued from the previous page...

DMAIN_FBEE \WWhen this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Fatal Bus
Error Interrupt is enabled. When this bit is reset, the Fatal Bus Error Enable Interrupt is disabled.

(R/W)

DMAIN_ETIE When this bit is set with an Abnormal Interrupt Summary Enable (Bit[15]), the Early
Transmit Interrupt is enabled. When this bit is reset, the Early Transmit Interrupt is disabled. (R/W)

DMAIN_RWTE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive
Watchdog Timeout Interrupt is enabled. When this bit is reset, the Receive Watchdog Timeout
Interrupt is disabled. (R/W)

DMAIN_RSE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive
Stopped Interrupt is enabled. When this bit is reset, the Receive Stopped Interrupt is disabled.

(R/W)

DMAIN_RBUE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive
Buffer Unavailable Interrupt is enabled. When this bit is reset, the Receive Buffer Unavailable Inter-
rupt is disabled. (R/W)

DMAIN_RIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Receive Interrupt
is enabled. When this bit is reset, the Receive Interrupt is disabled. (R/W)

DMAIN_UIE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmit Un-
derflow Interrupt is enabled. When this bit is reset, the Underflow Interrupt is disabled. (R/W)

DMAIN_OIE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive Over-
flow Interrupt is enabled. When this bit is reset, the Overflow Interrupt is disabled. (R/W)

DMAIN_TJTE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmit
Jabber Timeout Interrupt is enabled. When this bit is reset, the Transmit Jabber Timeout Interrupt
is disabled. (R/W)

DMAIN_TBUE When this bit is set with Normal Interrupt Summary Enable (Bit 16), the Transmit Buffer
Unavailable Interrupt is enabled. When this bit is reset, the Transmit Buffer Unavailable Interrupt is
disabled. (R/W)

DMAIN_TSE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmission
Stopped Interrupt is enabled. When this bit is reset, the Transmission Stopped Interrupt is disabled.
R/W)

DMAIN_TIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Transmit Interrupt
is enabled. When this bit is reset, the Transmit Interrupt is disabled. (R/W)

Espressif Systems 256 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.9. DMAMISSEDFR_REG (0x0020)

<<OO o §<O
5 O $ ©
& Y / 4 S/
§ &° &° ¢
£ @ w © &
N o O A\
’ 30 29| 28 | 27 17| 16 | 10 0 ‘
] 0o ofoxo 0x0 0x0 0x0 \ Reset

Overflow_BFOC This bit is set every time the Overflow Frame Counter (Bits[27:17]) overflows, that
is, the Rx FIFO overflows with the overflow frame counter at maximum value. In such a scenario,

the overflow frame counter is reset to all-zeros and this bit indicates that the rollover happened.
(R/SS/RC)

Overflow_FC This field indicates the number of frames missed by the application. This counter is
incremented each time the MTL FIFO overflows. The counter is cleared when this register is read.
(R/SS/RC)

Overflow_BMFC This bit is set every time Missed Frame Counter (Bits[15:0]) overflows, that is, the
DMA discards an incoming frame because of the Host Receive Buffer being unavailable with the
missed frame counter at maximum value. In such a scenario, the Missed frame counter is reset to
all-zeros and this bit indicates that the rollover happened. (R/SS/RC)

Missed_FC This field indicates the number of frames missed by the controller because of the Host
Receive Buffer being unavailable. This counter is incremented each time the DMA discards an
incoming frame. The counter is cleared when this register is read. (R/SS/RC)

Register 10.10. DMARINTWDTIMER_REG (0x0024)

GQ’& o
& <b\§
B T]
‘OOOOOOOOOOOOOOOOOOOOOOOO| 0x000 ‘Reset

RIWTC This bit indicates the number of system clock cycles multiplied by 256 for which the watchdog
timer is set. The watchdog timer gets triggered with the programmed value after the Rx DMA
completes the transfer of a frame for which the Rl (RECV_INT) status bit is not set because of the
setting in the corresponding descriptor RDES1[31]. When the watchdog timer runs out, the Rl bit
is set and the timer is stopped. The watchdog timer is reset when the Rl bit is set high because of
automatic setting of Rl as per RDES1[31] of any received frame. (R/W)

Espressif Systems 257 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.11. DMATXCURRDESC_REG (0x0048)

E]

’ 0x000000000 \ Reset

TRANS_DSCR_ADDR_PTR The address of the current receive descriptor list. Cleared on Reset.
Pointer updated by the DMA during operation. (RO)

Register 10.12. DMARXCURRDESC_REG (0x004C)

E]

’ 0x000000000

‘ Reset

RECV_DSCR_ADDR_PTR The address of the current receive descriptor list. Cleared on Reset.
Pointer updated by the DMA during operation. (RO)

Register 10.13. DMATXCURRADDR_BUF_REG (0x0050)

E]

] 0x000000000

‘ Reset

TRANS_BUFF_ADDR_PTR The address of the current receive descriptor list. Cleared on Reset.
Pointer updated by the DMA during operation. (RO)

Register 10.14. DMARXCURRADDR_BUF_REG (0x0054)

|

’ 0x000000000 \ Reset

RECV_BUFF_ADDR_PTR The address of the current receive descriptor list. Cleared on Reset.
Pointer updated by the DMA during operation. (RO)

Espressif Systems 258 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.15. EMACCONFIG_REG (0x1000)

e elele]:] 0\

o| ox0 |o|0|o| 0x0 \Reset

Q
el S & L
2 <<<'\§ Q\‘?‘((/ @Q& o £ & <<<<\® o
S S /\OQ\Q?’({ w@o /\(8& %&\: ézé/o$ Qt 4}4 QQ\ o Q
S L & Ty & O ‘0@*\9 @“Q\ Tl o‘¢<‘f<&
N O N OO O @) OO O O O O
£ & & &L \§ @ F 3 @N &
SR N o

SAIRC This field controls the source address insertion or replacement for all transmitted frames.
Bit[30] specifies which MAC Address register (O or 1) is used for source address insertion or re-
placement based on the values of Bits [29:28]: (R/W)

e 2’b0x: The input signals mti_sa_ctrl_i and ati_sa_ctrl_i control the SA field generation.

e 2’p10: If Bit[30] is set to O, the MAC inserts the content of the MAC Address 0 registers in
the SA field of all transmitted frames. If Bit[30] is set to 1 the MAC inserts the content of the
MAC Address 1 registers in the SA field of all transmitted frames.

e 2’pb11: If Bit[30] is set to O, the MAC replaces the content of the MAC Address 0 registers in
the SA field of all transmitted frames. If Bit[30] is set to 1, the MAC replaces the content of
the MAC Address 1 registers in the SA field of all transmitted frames.

ASS2KP When set, the MAC considers all frames, with up to 2,000 bytes length, as normal packets.
When Bit[20] (JE) is not set, the MAC considers all received frames of size more than 2K bytes
as Giant frames. When this bit is reset and Bit[20] (JE) is not set, the MAC considers all received
frames of size more than 1,518 bytes (1,522 bytes for tagged) as Giant frames. When Bit[20] is
set, setting this bit has no effect on Giant Frame status. (R/W)

EMACWATCHDOG When this bit is set, the MAC disables the watchdog timer on the receiver. The
MAC can receive frames of up to 16,383 bytes. When this bit is reset, the MAC does not allow a
receive frame which more than 2,048 bytes (10,240 if JE is set high) or the value programmed in
Register (Watchdog Timeout Register). The MAC cuts off any bytes received after the watchdog
limit number of bytes. (R/W)

EMACJABBER When this bit is set, the MAC disables the jabber timer on the transmitter. The MAC
can transfer frames of up to 16,383 bytes. When this bit is reset, the MAC cuts off the trans-
mitter if the application sends out more than 2,048 bytes of data (10,240 if JE is set high) during
transmission. (R/W)

EMACJUMBOFRAME When this bit is set, the MAC allows Jumbo frames of 9,018 bytes (9,022
bytes for VLAN tagged frames) without reporting a giant frame error in the receive frame status.

(R/W)

Continued on the next page...

Espressif Systems 259 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.15. EMACCONFIG_REG (0x1000)

Continued from the previous page...

EMACINTERFRAMEGAP These bits control the minimum IFG between frames during transmission.
R/W)

* 3'p000: 96 bit times.
e 3'p001: 88 bit times.
e 3'p010: 80 bit times.

e 3'b111: 40 bit times. In the half-duplex mode, the minimum IFG can be configured only for
64 bit times (IFG = 100). Lower values are not considered.

EMACDISABLECRS When set high, this bit makes the MAC transmitter ignore the MIl CRS signal
during frame transmission in the half-duplex mode. This request results in no errors generated
because of Loss of Carrier or No Carrier during such transmission. When this bit is low, the MAC

transmitter generates such errors because of Carrier Sense and can even abort the transmissions.
(R/W)

EMACMII This bit selects the Ethernet line speed. It should be set to 1 for 10 or 100 Mbps operations.
In 10 or 100 Mbps operations, this bit, along with FES(EMACFESPEED) bit, it selects the exact
linespeed. In the 10/100 Mbps-only operations, the bit is always 1. (R/W)

EMACFESPEED This bit selects the speed in the Mil, RMIl interface. 0: 10 Mbps; 1: 100 Mbps.
R/W)

EMACRXOWN When this bit is set, the MAC disables the reception of frames when the TX_EN is
asserted in the half-duplex mode. When this bit is reset, the MAC receives all packets that are
given by the PHY while transmitting. This bit is not applicable if the MAC is operating in the full-
duplex mode. (R/W)

EMACLOOPBACK When this bit is set, the MAC operates in the loopback mode MIl. The MIl Receive
clock input (CLK_RX) is required for the loopback to work properly, because the transmit clock is
not looped-back internally. (R/W)

EMACDUPLEX When this bit is set, the MAC operates in the full-duplex mode where it can transmit
and receive simultaneously. This bit is read only with default value of 1’b1 in the full-duplex-mode.

(R/W)

EMACRXIPCOFFLOAD When this bit is set, the MAC calculates the 16-bit one’s complement of the
one’s complement sum of all received Ethernet frame payloads. It also checks whether the IPv4
Header checksum (assumed to be bytes 25/26 or 29/30 (VLAN-tagged) of the received Ethernet
frame) is correct for the received frame and gives the status in the receive status word. The MAC
also appends the 16-bit checksum calculated for the IP header datagram payload (bytes after the
IPv4 header) and appends it to the Ethernet frame transferred to the application (when Type 2 COE
is deselected). When this bit is reset, this function is disabled. (R/W)

Continued on the next page...

Espressif Systems 260 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.15. EMACCONFIG_REG (0x1000)

Continued from the previous page...

EMACRETRY When this bit is set, the MAC attempts only one transmission. When a collision occurs
on the Ml interface, the MAC ignores the current frame transmission and reports a Frame Abort
with excessive collision error in the transmit frame status. When this bit is reset, the MAC attempts
retries based on the settings of the BL field (Bits [6:5]). This bit is applicable only in the half-duplex
mode. (R/W)

EMACPADCRCSTRIP When this bit is set, the MAC strips the Pad or FCS field on the incoming
frames only if the value of the length field is less than 1,536 bytes. All received frames with length
field greater than or equal to 1,536 bytes are passed to the application without stripping the Pad
or FCS field. When this bit is reset, the MAC passes all incoming frames, without modifying them,
to the Host. (R/W)

EMACBACKOFFLIMIT The Back-Off limit determines the random integer number (r) of slot time de-
lays (512 bit times for 10/100 Mbps) for which the MAC waits before rescheduling a transmission
attempt during retries after a collision. This bit is applicable only in the half-duplex mode.

e 00: k= min (n, 10).
e 01: k=min (n, 8).
e 10: k=min (n, 4).

e 11: k =min (n, 1), n = retransmission attempt. The random integer r takes the value in the
range O ~ 2000.

EMACDEFERRALCHECK Deferral Check. (R/W)

EMACTX When this bit is set, the transmit state machine of the MAC is enabled for transmission on
the MIl. When this bit is reset, the MAC transmit state machine is disabled after the completion of
the transmission of the current frame, and does not transmit any further frames. (R/W)

EMACRX When this bit is set, the receiver state machine of the MAC is enabled for receiving frames
from the MIl. When this bit is reset, the MAC receive state machine is disabled after the completion
of the reception of the current frame, and does not receive any further frames from the Mil. (R/W)

PLTF These bits control the number of preamble bytes that are added to the beginning of every Trans-
mit frame. The preamble reduction occurs only when the MAC is operating in the full-duplex mode.
2’b00: 7 bytes of preamble. 2’b01: 5 bytes of preamble. 2’b10: 3 bytes of preamble. (R/W)

Espressif Systems 261 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.16. EMACFF_REG (0x1004)

N
D S N
<<//
<</Q<<>A %Q’GQ) <<<</ N < <N K @Q’(@ OQ(O
& @ FF L FIFF & Q
‘31 30 10 9 8 7 6 5 4 3 2 1 0 ‘
\o 000 00O OOOTOTG OTU OTU O0TUO0OUO0OTUO0OTUOTU OTG OGO OTG OO ololol oo |olololo o O‘Reset

RECEIVE_ALL When this bit is set, the MAC Receiver module passes all received frames, irrespective
of whether they pass the address filter or not, to the Application. The result of the SA or DA filtering
is updated (pass or fail) in the corresponding bits in the Receive Status Word. When this bit is reset,
the Receiver module passes only those frames to the Application that pass the SA or DA address
filter. (R/W)

SAFE When this bit is set, the MAC compares the SA field of the received frames with the values
programmed in the enabled SA registers. If the comparison fails, the MAC drops the frame. When
this bit is reset, the MAC forwards the received frame to the application with updated SAF bit of
the Rx Status depending on the SA address comparison. (R/W)

SAIF When this bit is set, the Address Check block operates in inverse filtering mode for the SA
address comparison. The frames whose SA matches the SA registers are marked as failing the
SA Address filter. When this bit is reset, frames whose SA does not match the SA registers are
marked as failing the SA Address filter. (R/W)

PCF These bits control the forwarding of all control frames (including unicast and multicast Pause
frames). (R/W)

e 2’b00: MAC filters all control frames from reaching the application.

e 2’b01: MAC forwards all control frames except Pause frames to application even if they fail
the Address filter.

e 2’b10: MAC forwards all control frames to application even if they fail the Address Filter.
e 2’b11: MAC forwards control frames that pass the Address Filter.
The following conditions should be true for the Pause frames processing:

e Condition 1: The MAC is in the full-duplex mode and flow control is enabled by setting Bit 2
(RFE) of Register (Flow Control Register) to 1.

e Condition 2;: The destination address (DA) of the received frame matches the special multicast
address or the MAC Address 0 when Bit 3 (UP) of the Register(Flow Control Register) is set.

e Condition 3: The Type field of the received frame is 0x8808 and the OPCODE field is 0x0001.

DBF When this bit is set, the AFM(Address Filtering Module) module blocks all incoming broadcast
frames. In addition, it overrides all other filter settings. When this bit is reset, the AFM module
passes all received broadcast frames. (R/W)

PAM When set, this bit indicates that all received frames with a multicast destination address (first bit
in the destination address field is ’1’) are passed. (R/W)

Continued on the next page...

Espressif Systems 262 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.16. EMACFF_REG (0x1004)

Continued from the previous page...

DAIF When this bit is set, the Address Check block operates in inverse filtering mode for the DA

address comparison for both unicast and multicast frames. When reset, normal filtering of frames
is performed. (R/W)

PMODE When this bit is set, the Address Filter module passes all incoming frames irrespective of the
destination or source address. The SA or DA Filter Fails status bits of the Receive Status Word are
always cleared when PR(PRT_RATIO) is set. (R/W)

Register 10.17. EMACGMIIADDR_REG (0x1010)

{_
N Q\’ ,{O Ny
s & & $ &
@ N J J NS
‘31 16 | 15 11|10 6|5 2 1 D‘
\o 0O 000 O0OO0O0GO OGO O OTUOUOTO OO0 O 0X00 0X00 0x00 o]o \Reset

MIIDEV This field indicates which of the 32 possible PHY devices are being accessed. (R/W)
MIIREG This field selects the desired Mll register in the selected PHY device. (R/W)

MIICSRCLK This field selects the APB clock frequency. It has the following two values. Other values
are reserved.

e 4’p0000: The APB clock frequency is 80 MHz. The MDC clock frequency is APB_CLK/42.

e 4’b0011: The APB clock frequency is 40 MHz. The MDC clock frequency is APB_CLK/26.
RW)

MIIWRITE When set, this field indicates to the PHY that this is a Write operation using MII_DATA. If

this field is not set, it indicates that this is a Read operation, that is, placing the data in MII_DATA.
R/W)

MIIBUSY This field is used in combination with MIIREG and MII_DATA.
Before writing to MIIREG and MII_DATA, this field should read logic O (idle state by default).
To read or write to MIIREG and MII_DATA, software (the user) should set this field to 1.

MII_DATA should be kept valid (data remains unchanged) when it is accessed until this field is
cleared by hardware (the MAC).

Note that ESP32 MAC does not receive ACK from PHY during a read or write access to MIIREG
and MII_DATA. (R/WS/SC)

Espressif Systems 263 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.18. EMACMIIDATA_REG (0x1014)

I e

‘31 16 | 15 0‘

\oooooooooooooooo 0x00000 \Reset

MII_DATA This field contains the 16-bit data value read from the PHY after a Management Read
operation or the 16-bit data value to be written to the PHY before a Management Write operation.

(R/W)

Espressif Systems 264 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.19. EMACFC_REG (0x1018)

<
N & .
\31 1s|15 a|5 4|3|2|1|0‘
\ 0x00000 |0 0 000 000 O 0| ox0 | 0 | 0 | 0 | 0 \Reset

PAUSE_TIME This field holds the value to be used in the Pause Time field in the transmit control
frame. If the Pause Time bits is configured to be double-synchronized to the MIl clock domain,
then consecutive writes to this register should be performed only after at least four clock cycles in
the destination clock domain. (R/W)

PLT Thisfield configures the threshold of the Pause timer automatic retransmission of the Pause frame.
The threshold values should be always less than the Pause Time configured in Bits[31:16]. For
example, if PT = 100H (256 slot-times), and PLT = 01, then a second Pause frame is automatically
transmitted at 228 (256-28) slot times after the first Pause frame is transmitted. The following list
provides the threshold values for different values: (R/W)

e 2’pb00: The threshold is Pause time minus 4 slot times (PT-4 slot times).
e 2’b01: The threshold is Pause time minus 28 slot times (PT-28 slot times).
e 2’p10: The threshold is Pause time minus 144 slot times (PT-144 slot times).

e 2’pb11: The threshold is Pause time minus 256 slot times (PT-256 slot times). The slot time is
defined as the time taken to transmit 512 bits (64 bytes) on the Mll interface.

UPFD A pause frame is processed when it has the unique multicast address specified in the IEEE
Std 802.3. When this bit is set, the MAC can also detect Pause frames with unicast address of
the station. This unicast address should be as specified in the EMACADDRO High Register and
EMACADDRO Low Register. When this bit is reset, the MAC only detects Pause frames with unique
multicast address. (R/W)

RFCE When this bit is set, the MAC decodes the received Pause frame and disables its transmitter for
a specified (Pause) time. When this bit is reset, the decode function of the Pause frame is disabled.
RW)

TFCE In the full-duplex mode, when this bit is set, the MAC enables the flow control operation to
transmit Pause frames. When this bit is reset, the flow control operation in the MAC is disabled,
and the MAC does not transmit any Pause frames. In the half-duplex mode, when this bit is set,
the MAC enables the backpressure operation. When this bit is reset, the backpressure feature is
disabled. (R/W)

Continued on the next page...

Espressif Systems 265 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.19. EMACFC_REG (0x1018)

Continued from the previous page...

FCBBA This bit initiates a Pause frame in the full-duplex mode and activates the backpressure function
in the half-duplex mode if the TFCE bit is set. In the full-duplex mode, this bit should be read as
1’b0 before writing to the Flow Control register. To initiate a Pause frame, the Application must set
this bit to 1’b1. During a transfer of the Control Frame, this bit continues to be set to signify that
a frame transmission is in progress. After the completion of Pause frame transmission, the MAC
resets this bit to 1'b0. The Flow Control register should not be written to until this bit is cleared. In
the half-duplex mode, when this bit is set (and TFCE is set), then backpressure is asserted by the
MAC. During backpressure, when the MAC receives a new frame, the transmitter starts sending
a JAM pattern resulting in a collision. When the MAC is configured for the full-duplex mode, the
BPA is automatically disabled. (R/WS/SC)(FCB)/(R/W)(BPA(backpressure activate))

Espressif Systems 266 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.20. EMACDEBUG_REG (0x1024)

S o) Re) P o
> E L& O S P D O NS
@ SEEN &R &L L @ &L &P L L
& Q QL F Q& O & Q& F & &
@ FHEE 7§ W @ I T HE Y

‘31 26|25|24|23|22|21 20|19|18 17|16|15 10|9 8|7|6 5

[+][] |
\o 0 0 0 O o|o|o|o|o|0xo |O|O><O |o|o 0 0 0 O o| OxO|O|OxO|O|O| Ox0|0\Reset

MTLTSFFS When high, this bit indicates that the MTL TxStatus FIFO is full. Therefore, the MTL cannot
accept any more frames for transmission. (RO)

MTLTFNES When high, this bit indicates that the MTL Tx FIFO is not empty and some data is left for
transmission. (RO)

MTLTFWCS When high, this bit indicates that the MTL Tx FIFO Write Controller is active and is trans-
ferring data to the Tx FIFO. (RO)

MTLTFRCS This field indicates the state of the Tx FIFO Read Controller: (RO)
e 2'b00: IDLE state.
e 2'b01: READ state (transferring data to the MAC transmitter).
e 2'b10: Waiting for TxStatus from the MAC transmitter.
e 2'b11: Writing the received TxStatus or flushing the Tx FIFO.

MACTP When high, this bit indicates that the MAC transmitter is in the Pause condition (in the full-
duplex-mode) and hence does not schedule any frame for transmission. (RO)

MACTFCS This field indicates the state of the MAC Transmit Frame Controller module: (RO)
e 2’b00: IDLE state.
e 2’pb01: Waiting for status of previous frame or IFG or backoff period to be over.
e 2’b10: Generating and transmitting a Pause frame (in the full-duplex mode).
e 2'b11: Transferring input frame for transmission.

MACTPES When high, this bit indicates that the MAC MII transmit protocol engine is actively trans-
mitting data and is not in the IDLE state. (RO)

MTLRFFLS This field gives the status of the fill-level of the Rx FIFO: (RO)
e 2’b00: Rx FIFO Empty.
e 2'b01: Rx FIFO fill-level below flow-control deactivate threshold.
e 2'p10: Rx FIFO fill-level above flow-control activate threshold.
e 2’b11: Rx FIFO Full.

Continued on the next page...

Espressif Systems 267 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.20. EMACDEBUG_REG (0x1024)

Continued from the previous page...
MTLRFRCS This field gives the state of the Rx FIFO read Controller: (RO)
2'b00: IDLE state.
2’b01: Reading frame data.
2'b10: Reserved.
2’b11: Flushing the frame data and status.

MTLRFWCAS When high, this bit indicates that the MTL Rx FIFO Write Controller is active and is
transferring a received frame to the FIFO. (RO)

MACRFFCS When high, this field indicates the active state of the FIFO Read and Write controllers
of the MAC Receive Frame Controller Module. MACRFFCS[1] represents the status of FIFO Read
controller. MACRFFCS|Q] represents the status of small FIFO Write controller. (RO)

MACRPES When high, this bit indicates that the MAC Ml receive protocol engine is actively receiving
data and not in IDLE state. (RO)

Espressif Systems 268 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.21. PMT_RWUFFR_REG (0x1028)

&
K
¢

E]

\oooooooooooooooooooooooooooooooo\Reset

WKUPPKTFILTER The MSB (31st bit) must be zero. Bit j[30:0] is the byte mask. If Bit 1/2/3/4
(byte number) of the byte mask is set, the CRC block processes the filter 0/1/2/3 Offset + j of the
incoming packet (RWKPTR is 0/1/2/3). (R/W)

e RWKPTR is O:Filter O Byte Mask;
e RWKPTR is 1: Filter 1 Byte Mask;
e RWKPTR is 2: Filter 2 Byte Mask;
e RWKPTR is 3: Filter 3 Byte Mask;

e RWKPTR is 4: Bit 3/11/19/27 specifies the address type, defining the destination address
type of the pattern. When the bit is set, the pattern applies to only multicast packets; when
the bit is reset, the pattern applies only to unicast packet for filter 0/1/2/3. Bit 0/8/16/24 is
the enable bit for filter 0/1/2/3;

e RWKPTR is 5: This filter 0/1/2/3 offset register defines the offset (within the packet) from
which the filter 0/1/2/3 examines the packets;

e RWKPTR is 6: This filter O (bit[15:0])/1 (bit[31:16]) CRC16 register contains the CRC16 value
calculated from the pattern and also the byte mask programmed to the wake-up filter register
block; The polynomial:

G(X) =x"® + x5 + x2 + 1.

e RWKPTR is 7: This filter 2 bit[15:0])/3(bit[31:16]) CRC16 register contains the CRC16 value
calculated from the pattern and also the byte mask programmed to the wake-up filter register
block. The polynomial:

G(X)=x"® + x5 + x2 + 1.

Espressif Systems 269 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.22. PMT_CSR_REG (0x102C)

A A
& S .90 S
\LS\éQ\Q) @Q’\ {g/\Q‘ 5 (@b\ \/Qv é@& {gQ*C\)gQ\O @G& \L_Q\ﬁ\jé\ﬁ\:%){%e
Q§ @e Q§ ‘Q)% “ &L I & N ®0Q$

‘31 30 29| 28 24|23 10

RWKFILTRST When this bit is set, it resets the remote RWKPTR register to 3’'b000. (R/WS/SC)

RWKPTR The maximum value of the pointer is 7 ,the detail information ,please refer to PMT_RWUFFR.
(RO)

GLBLUCAST When set, enables any unicast packet filtered by the MAC (DAFilter) address recognition
to be a remote wake-up frame. (R/W)

RWKPRCVD When set, this bit indicates the power management event is generated because of the
reception of a remote wake-up frame. This bit is cleared by a Read into this register. (R/SS/RC)

MGKPRCVD When set, this bit indicates that the power management event is generated because of
the reception of a magic packet. This bit is cleared by a Read into this register. (R/SS/RC)

RWKPKTEN hen set, enables generation of a power management event because of remote wake-up
frame reception. (R/W)

MGKPKTEN When set, enables generation of a power management event because of magic packet
reception. (R/W)

PWRDWN hen set, the MAC receiver drops all received frames until it receives the expected magic
packet or remote wake-up frame. This bit must only be set when MGKPKTEN, GLBLUCAST, or
RWKPKTEN bit is set high. (R/WS/SC)

Espressif Systems 270 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.23. EMACLPI_CSR_REG (0x1030)

)) S S
%QJ(\\Q) GQJCJ <</$ %Q)é@ Q\%&Q\%& (-OQ)J\AQ) Q@ ((/% \Q\)LQ«/e
N SRR N Q7R N & REERS
‘ 31 20| 19 | 18 | 17 | 16 (15 09 8 |7 41 3 2 1 0 ‘

[o]
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

0o O‘Reset

LPITXA This bit controls the behavior of the MAC when it is entering or coming out of the LPI mode on
the transmit side.If the LPITXA and LPIEN bits are set to 1, the MAC enters the LPI mode only after
all outstanding frames and pending frames have been transmitted. The MAC comes out of the
LPI mode when the application sends any frame.When this bit is O, the LPIEN bit directly controls
behavior of the MAC when it is entering or coming out of the LPI mode. (R/W)

PLS This bit indicates the link status of the PHY. When set, the link is considered to be okay (up) and
when reset, the link is considered to be down. (R/W)

LPIEN When set, this bit instructs the MAC Transmitter to enter the LPI state. When reset, this bit
instructs the MAC to exit the LPI state and resume normal transmission.This bit is cleared when

the LPITXA bit is set and the MAC exits the LPI state because of the arrival of a new packet for
transmission. (R/W/SC)

RLPIST When set, this bit indicates that the MAC is receiving the LPI pattern on the MIl interface.
R/W)

TLPIST When set, this bit indicates that the MAC is receiving the LPI pattern on the MIl interface.
RW)

RLPIEX When set, this bit indicates that the MAC Receiver has stopped receiving the LPI pattern on

the Ml interface, exited the LPI state, and resumed the normal reception. This bit is cleared by a
read into this register. (R/SS/RC)

RLPIEN When set, this bit indicates that the MAC Receiver has received an LPI pattern and entered
the LPI state. This bit is cleared by a read into this register. (R/SS/RC)

TLPIEX When set, this bit indicates that the MAC transmitter has exited the LPI state after the user

has cleared the LPIEN bit and the LPI_TW_Timer has expired.This bit is cleared by a read into this
register. (R/SS/RC)

TLPIEN When set, this bit indicates that the MAC Transmitter has entered the LPI state because of
the setting of the LPIEN bit. This bit is cleared by a read into this register. (R/SS/RC)

Espressif Systems 271

ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.24. EMACLPITIMERSCONTROL_REG (0x1034)

Qx
& &
& %\@ «*Q\Q
7/

%Q’é V4 N

@ N N
‘31 26 | 25 16 | 15 0‘
\ooooooo X 3 E sooooooooooooooo\Reset

LPI_LS_TIMER This field specifies the minimum time (in milliseconds) for which the link status from
the PHY should be up (OKAY) before the LPI pattern can be transmitted to the PHY. The MAC
does not transmit the LPI pattern even when the LPIEN bit is set unless the LPI_LS_Timer reaches
the programmed terminal count. The default value of the LPI_LS_Timer is 1000 (1 sec) as defined
in the IEEE standard.(R/W)

LPI_TW_TIMER This field specifies the minimum time (in microseconds) for which the MAC waits after
it stops transmitting the LPI pattern to the PHY and before it resumes the normal transmission. The
TLPIEX status bit is set after the expiry of this timer.(R/W)

Register 10.25. EMACINTS_REG (0x1038)

D 5 D D & D
@é é& Qf\ Qué z&\e %)
& Q\\ & & A\ &
g AN A < A

‘31 11| 10 9 |8 41 3 (2 0‘

\oooooooooooooooooooooooooooooooo\Reset

LPIINTS When the Energy Efficient Ethernet feature is enabled, this bit is set for any LPI state entry or
exit in the MAC Transmitter or Receiver. This bit is cleared on reading Bit[0] of Register (LPI Control
and Status Register). (RO)

PMTINTS This bit is set when a magic packet or remote wake-up frame is received in the power-down
mode (see Bit[5] and Bit[6] in the PMT Control and Status Register). This bit is cleared when both
Bits[6:5] are cleared because of a read operation to the PMT Control and Status register. This bit
is valid only when you select the optional PMT module during core configuration. (RO)

Espressif Systems 272 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.26. EMACINTMASK_REG (0x103C)

S O-’\Lh\ S V%{_ S

& &vé@c & %& S
P \\é e D Q D
@ N @ & ¢

‘31 ll|10|9|8 4|3|2 0‘

\ooooooooooooooooooooo|o|o|ooooo|0|ooO\Reset

LPIINTMASK When set, this bit disables the assertion of the interrupt signal because of the setting
of the LPI Interrupt Status bit in Register (Interrupt Status Register). (R/W)

PMTINTMASK When set, this bit disables the assertion of the interrupt signal because of the setting
of PMT Interrupt Status bit in Register (Interrupt Status Register). (R/W)

Register 10.27. EMACADDROHIGH_REG (0x1040)

Q N
o8 ™S
¥ &
Q/%%/ @6\ ?90
QS N /
P & &
® N =
‘ 31 |30 16 | 15 0‘
‘O o o o o o0 o o o o o o o o o0 o0 OXOFFFF ‘Reset

ADDRESS_ENABLEO This bit is always set to 1. (RO)

MAC_ADDRESSO_HI This field contains the upper 16 bits (47:32) of the first 6-byte MAC address.
The MAC uses this field for filtering the received frames and inserting the MAC address in the
Transmit Flow Control (Pause) Frames. (R/W)

Register 10.28. EMACADDROLOW_REG (0x1044)

E]

\ OXOFFFFFFFF |Reset

EMACADDROLOW_REG This field contains the lower 32 bits of the first 6-byte MAC address. This
is used by the MAC for filtering the received frames and inserting the MAC address in the Transmit
Flow Control (Pause) Frames. (R/W)

Espressif Systems 273 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.29. EMACADDR1HIGH_REG (0x1048)

QO e&o\/ QD
R & &
RS b < i
&’ S & S
‘31|30|29 24|23 16|l5 0‘
\ 0 | 0 | 0x00 |o 0 00 0 0 O o| OXOFFFF \Reset

ADDRESS_ENABLE1 When this bit is set, the address filter module uses the second MAC address
for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS When this bit is set, the EMACADDR1[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDR1[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL These bits are mask control bits for comparison of each of the
EMACADDRT1 bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDR1 registers. Each bit controls the masking of the
bytes as follows:

e Bit[29]: EMACADDR1 High [15:8].
e Bit[28]: EMACADDR1 High [7:0].
e Bit[27): EMACADDR1 Low [31:24].
e Bit[24]: EMACADDR1 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS1_HI This field contains the upper 16 bits, Bits[47:32] of the second 6-byte MAC
address. (R/W)

Register 10.30. EMACADDR1LOW_REG (0x104C)

E]

\ OXOFFFFFFFF |Reset

EMACADDR1LOW_REG This field contains the lower 32 bits of the second 6-byte MAC address.
The content of this field is undefined, so the register needs to be configured after the initialization
process. (R/W)

Espressif Systems 274 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.31. EMACADDR2HIGH_REG (0x1050)

52
% %%q, égQ‘o\/ N
O & &
57 © 3 §$
& OQ’ Q S N
> el
SE§ 2 & D
P N\ & W
‘31|30|29 24|23 16|15 0‘
\ 0 | 0 | 0x00 |o 0 00 0 0 O o| OXOFFFF \Reset

ADDRESS_ENABLE2 \When this bit is set, the address filter module uses the third MAC address for
perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS2 When this bit is set, the EMACADDR2[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDR2[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL2 These bits are mask control bits for comparison of each of the
EMACADDR?2 bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDR2 registers. Each bit controls the masking of the
bytes as follows:

e Bit[29]: EMACADDR2 High [15:8].
e Bit[28]: EMACADDR2 High [7:0].
e Bit[27]): EMACADDR2 Low [31:24].
e Bit[24]: EMACADDR2 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS2_HI This field contains the upper 16 bits, Bits[47:32] of the third 6-byte MAC ad-
dress. (R/W)

Register 10.32. EMACADDR2LOW_REG (0x1054)

E]

\ OXOFFFFFFFF |Reset

EMACADDR2LOW_REG This field contains the lower 32 bits of the third 6-byte MAC address. The
content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 275 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.33. EMACADDR3HIGH_REG (0x1058)

N
0y, D &K N
v@&Qg’% d Qoé\ %Q)\/%
S > &
o 53 & ®
SEF Sl & %
Y W N NI
‘31|30|29 24|23 16|15 0‘
\ 0 | 0 | 0x00 |o 0 00 0 0 O o| OXOFFFF \Reset

ADDRESS_ENABLE3 When this bit is set, the address filter module uses the fourth MAC address for
perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS3 When this bit is set, the EMACADDR®3[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDRS3[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL3 These bits are mask control bits for comparison of each of the
EMACADDRS bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRS registers. Each bit controls the masking of the
bytes as follows:

e Bit[29]: EMACADDRS High [15:8].
e Bit[28]: EMACADDRS High [7:0].
e Bit[27): EMACADDRS Low [31:24].
e Bit[24]: EMACADDRS Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS3_HI This field contains the upper 16 bits, Bits[47:32] of the fourth 6-byte MAC ad-
dress. (R/W)

Register 10.34. EMACADDR3LOW_REG (0x105C)

E]

\ OXOFFFFFFFF |Reset

EMACADDRS3LOW_REG This field contains the lower 32 bits of the fourth 6-byte MAC address.
The content of this field is undefined, so the register needs to be configured after the initialization

process. (R/W)

Espressif Systems 276 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.35. EMACADDR4HIGH_REG (0x1060)

>
M &K N
§;&Q@% C)oé\ I
S < &
o 53 & ®
SEF Sl & %
O W @ NS
31 30 |29 24|23 16 | 15 0
(2] =] | | |
00 0x00 0O 0 O 0O O o 0 o OxOFFFF Reset

[o]o] | | |

ADDRESS_ENABLE4 \When this bit is set, the address filter module uses the fifth MAC address for
perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS4 When this bit is set, the EMACADDR4[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDR4[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL4 These bits are mask control bits for comparison of each of the
EMACADDR4 bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRA4 registers. Each bit controls the masking of the
bytes as follows:

e Bit[29]: EMACADDR4 High [15:8].
e Bit[28]: EMACADDR4 High [7:0].
e Bit[27]): EMACADDR4 Low [31:24].
e Bit[24]: EMACADDR4 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS4_HI This field contains the upper 16 bits, Bits[47:32] of the fifth 6-byte MAC ad-
dress. (R/W)

Register 10.36. EMACADDR4LOW_REG (0x1064)

E]

\ OXOFFFFFFFF |Reset

EMACADDR4LOW_REG This field contains the lower 32 bits of the fifth 6-byte MAC address. The
content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 277 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.37. EMACADDRS5HIGH_REG (0x1068)

0\9
o o & N
v@&Qg’% % Qoé\ %@\/%
AN & &
o 53 & ®
SEF Sl & %
Y W N NI
‘31|30|29 24|23 16|15 0‘
\ 0 | 0 | 0x00 |o 0 00 0 0 O o| OXOFFFF \Reset

ADDRESS_ENABLE5 When this bit is set, the address filter module uses the sixth MAC address for
perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS5 When this bit is set, the EMACADDR5[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDRS5[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL5 These bits are mask control bits for comparison of each of the
EMACADDRS bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRS registers. Each bit controls the masking of the
bytes as follows:

e Bit[29]: EMACADDRS High [15:8].
e Bit[28]: EMACADDRS5 High [7:0].
e Bit[27]): EMACADDRS Low [31:24].
e Bit[24]: EMACADDRS Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS5_HI This field contains the upper 16 bits, Bits[47:32] of the sixth 6-byte MAC ad-
dress. (R/W)

Register 10.38. EMACADDR5LOW_REG (0x106C)

E]

\ OXOFFFFFFFF |Reset

EMACADDRS5SLOW_REG This field contains the lower 32 bits of the sixth 6-byte MAC address. The
content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 278 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.39. EMACADDR6HIGH_REG (0x1070)

>
© %Q) «Q‘ N
S > &
o 53 & ®
SEF Sl & %
Y W N NI
‘31|30|29 24|23 16|15 0‘
\ 0 | 0 | 0x00 |o 0 00 0 0 O o| OXOFFFF \Reset

ADDRESS_ENABLE6 \When this bit is set, the address filter module uses the seventh MAC address
for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS6 When this bit is set, the EMACADDRG[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDRGB[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL6 These bits are mask control bits for comparison of each of the
EMACADDRG bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRS registers. Each bit controls the masking of the
bytes as follows:

e Bit[29]: EMACADDRS High [15:8].
e Bit[28]: EMACADDRS High [7:0].
e Bit[27]): EMACADDRS Low [31:24].
e Bit[24]: EMACADDRS Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS6_HI This field contains the upper 16 bits, Bits[47:32] of the seventh 6-byte MAC
address. (R/W)

Register 10.40. EMACADDR6LOW_REG (0x1074)

E]

\ OXOFFFFFFFF |Reset

EMACADDRG6LOW_REG This field contains the lower 32 bits of the seventh 6-byte MAC address.
The content of this field is undefined, so the register needs to be configured after the initialization

process. (R/W)

Espressif Systems 279 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.41. EMACADDR7HIGH_REG (0x1078)

0\3
A S & »
?©\3’Qg?% QO%/\ %/\\/2\
S > &
o 53 & ®
IS X7 & ©7
PP Ny & ¥
‘31|30|29 24|23 16|15 0‘
\ 0 | 0 | 0x00 |o 0 00 0 0 O o| OXOFFFF \Reset

ADDRESS_ENABLE7 When this bit is set, the address filter module uses the eighth MAC address
for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS7 When this bit is set, the EMACADDRY7[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDR7[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL7 These bits are mask control bits for comparison of each of the
EMACADDRY bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRY registers. Each bit controls the masking of the
bytes as follows:

e Bit[29]: EMACADDRY? High [15:8].
e Bit[28]: EMACADDRY? High [7:0].
e Bit[27): EMACADDR? Low [31:24].
e Bit[24]: EMACADDR? Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS7_HI This field contains the upper 16 bits, Bits[47:32] of the eighth 6-byte MAC
address. (R/W)

Register 10.42. EMACADDR7LOW_REG (0x107C)

E]

\ OXOFFFFFFFF |Reset

EMACADDR7LOW_REG This field contains the lower 32 bits of the eighth 6-byte MAC address.
The content of this field is undefined, so the register needs to be configured after the initialization

process. (R/W)

Espressif Systems 280 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.43. EMACCSTATUS_REG (0x10D8)

Q
&OO
D © D &P &
g N & S & &
& > & NECENENY

‘31 17|16|15 5|4|3|2 1

B
\ooooooooooooooo|o|ooooooooooo|o|o|o|o\Rese»c

JABBER_TIMEOUT This bit indicates whether there is jabber timeout error (1’b1) in the received
frame. (RO)

LINK_SPEED This bit indicates the current speed of the link: (RO)
e 2’p00: 2.5 MHz.
e 2'b01: 25 MHz.
e 2'p10: 125 MHz.
LINK_MODE This bit indicates the current mode of operation of the link: (RO)
e 1’'b0: Half-duplex mode.

e 1’b1: Full-duplex mode.

Register 10.44. EMACWDOGTO_REG (0x10DC)

) S D <O
@ P @ S
\@%@ Q$Q \@@Q) \$QO
‘31 17| 16 |15 14|l3 0‘
\o 0O 000 000 O0OU OGO OTU OO 0O o|o|o o| 0x0000 \Reset

PWDOGEN When this bit is set and Bit[23] (WD) of EMACCONFIG_REG is reset, the WTO field
(Bits[13:Q]) is used as watchdog timeout for a received frame. When this bit is cleared, the watch-
dog timeout for a received frame is controlled by the setting of Bit[23] (WD) and Bit[20] (JE) in
EMACCONFIG_REG. (R/W)

WDOGTO When Bit[16] (PWE) is set and Bit[23] (WD) of EMACCONFIG_REG is reset, this field is used
as watchdog timeout for a received frame. If the length of a received frame exceeds the value of
this field, such frame is terminated and declared as an error frame. (R/W)

Espressif Systems 281 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.45. EMAC_EX_CLKOUT_CONF_REG (0x0000)

Q
> &
N <
9 5
\S&/ \S&/
Y °
(@& Oo\/ Qc}/
@%@ <<§\v <<§\v
\oooooooooooooooooooooooo| Ox02|OxO4 \Reset
EMAC_CLK_OUT_H_DIV_NUM RMIl CLK using internal APLL CLK, the half divider number, when
using RMII PHY. (R/W)
EMAC_CLK_OUT_DIV_NUM RMIl CLK using internal APLL CLK, the whole divider number, when
using RMII PHY. (R/W)
Register 10.46. EMAC_EX_OSCCLK_CONF_REG (0x0004)
\QQ@ N S N\
S O S O
< < OQ/ < Oﬁy/
{-? \A/ [D \Q/ <
o 9 <§/ 9 <§/
é"’b\ 00%0/ QOCJO/ 00%0/ 00%0/ 00%0/
% \e \a \s \g \e
& S S S S >
[0 0o 0 0o 0o o ofo 0 1 9 19 |Reset
EMAC_OSC_CLK_SEL Ethernet work using external PHY output clock or not for RMIl CLK, when
using RMII PHY. When this bit is set to 1, external PHY CLK is used. When this bit is set to 0, APLL
CLKis used. (R/W)
EMAC_OSC_H_DIV_NUM_100M RMII/MI| half-integer divider, when register
EMAC_EX_CLKOUT_CONF clock divider’s speed is 100M. (R/W)
EMAC_OSC_DIV_NUM_100M RMII/MII whole-integer divider, when register
EMAC_EX_CLKOUT_CONF clock divider’s speed is 100M. (R/W)
EMAC_OSC_H_DIV_NUM_10M RMII/MI| half-integer divider, when register
EMAC_EX_CLKOUT_CONF clock divider’s speed is 10M. (R/W)
EMAC_OSC_DIV_NUM_10M RMII/MII whole-integer divider, when register
EMAC_EX_CLKOUT_CONF clock divider’s speed is 10M. (R/W)
Espressif Systems 282 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

10 Ethernet Media Access Controller (MAC)

Register 10.47. EMAC_EX_CLK_CTRL_REG (0x0008)

S o
Qj_/ (5/ Q@Q@
N A
3 5 NP $F
&° S0 707 580107
& CIE S
\oooooooooooooooooooooooooooooooo\Reset
EMAC_MII_CLK_RX_EN Enable Ethernet RX CLK. (R/W)
EMAC_MII_CLK_TX_EN Enable Ethernet TX CLK. (R/W)
EMAC_INT_OSC_EN Using internal APLL CLK in RMII PHY mode. (R/W)
EMAC_EXT_OSC_EN Using external APLL CLK in RMII PHY mode. (R/W)
Register 10.48. EMAC_EX_PHYINF_CONF_REG (0x000C)
Q7
&
.S
> x> 1)
Q}\\@ o Q}\\@
& S &
\oooooooooooooooo|ooo|ooooooooooooo\Reset
EMAC_PHY_INTF_SEL The PHY interface selected. 0x0: PHY MiIl, Ox4: PHY RMII. (R/W)
Register 10.49. EMAC_PD_SEL_REG (0x0010)
&
<
vyv/
Q)& e
& 7
N S

\oooooooooooooooooooooooooooooo O‘Reset

EMAC_RAM_PD_EN Ethernet RAM power-down enable signal. Bit[0]: TX SRAM; Bit[1]: RX SRAM.
Setting the bit to 1 powers down the RAM. (R/W)

Espressif Systems 283 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

11 12C Controller (12C)

11.1 Overview
An 12C (Inter-Integrated Circuit) bus can be used for communication with several external devices connected to the
same bus as ESP32. The ESP32 has dedicated hardware to communicate with peripherals on the 12C bus.

11.2 Features
The 12C controller has the following features:

e Supports both master mode and slave mode

e Supports multi-master and multi-slave communication

Supports standard mode (100 kbit/s)

Supports fast mode (400 kbit/s)

Supports 7-bit addressing and 10-bit addressing

e Supports continuous data transmission with disabled Serial Clock Line (SCL)

Supports programmable digital noise filter

11.3 Functional Description

11.3.1 Introduction
12C is a two-wire bus, consisting of an SDA and an SCL line. These lines are configured to open the drain output.
The lines are shared by two or more devices: usually one or more masters and one or more slaves.

Communication starts when a master sends out a start condition: it will pull the SDA line low, and will then pull
the SCL line high. It will send out nine clock pulses over the SCL line. The first eight pulses are used to shift out a
byte consisting of a 7-bit address and a read/write bit. If a slave with this address is active on the bus, the slave
can answer by pulling the SDA low on the ninth clock pulse. The master can then send out more 9-bit clock pulse
clusters and, depending on the read/write bit sent, the device or the master will shift out data on the SDA line, with
the other side acknowledging the transfer by pulling the SDA low on the ninth clock pulse. During data transfer,
the SDA line changes only when the SCL line is low. When the master has finished the communication, it will send
a stop condition on the bus by raising SDA, while SCL will already be high.

The ESP32 12C peripheral can handle the 12C protocol, freeing up the processor cores for other tasks.

Espressif Systems 284 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

11.3.2 Architecture

An 12C controller can operate either in master mode or slave mode. The 12C_MS_MODE register is used to

select the mode. Figure 11-1 shows the 12C Master architecture, while Figure 11-2 shows the 12C Slave architec-
ture.

12C_Master cmdo

cmd1

cmd_rd

cmd_done

cmdi5

cmd_content

[2C_TRANS_START _____ | CMD_Controller
3x8

SCL_LOW_PERIOD

i SCL_HIGH_PERIOD

SCL_FSM SCL

SREES) RAM - SDA_FSM

rdata/wdata DATA_Shifter -~ A,

12C_RX_LSB_FIRST
12C_TX_LSB_FIRST

Figure 11-1. 12C Master Architecture

SCL_LOW_PERIOD

|20 S|ave SCL_HIGH_PERIOD 12C_SCL_FILTER_EN

ety

rdata/wdata
DATA_Shifter

12C_RX_LSB_FIRST

12C_TX_LSB_FIRST 0
12C_SDA FILTER_EN

Figure 11-2. 12C Slave Architecture

The 12C controller contains the following units:

¢ RAM, the size of which is 32 x 8 bits, and it is directly mapped onto the address space of the CPU cores,
starting at address REG_I2C_BASE+0x100. Each byte of 12C data is stored in a 32-bit word of memory (so,

the first byte is at +0x100, the second byte at +Ox104, the third byte at +0x108, etc.) Users need to set
register 12C_NONFIFO_EN.

e A CMD_Controller and 16 command registers (cmdO ~ cmd15), which are used by the 12C Master to control
data transmission. One command at a time is executed by the 12C controller.

e SCL_FSM: A state machine that controls the SCL clock. The 12C_SCL_HIGH_PERIOD_REG and 12C_SCL_

LOW_PERIOD_REG registers are used to configure the frequency and duty cycle of the signal on the SCL
line.

e SDA_FSM: A state machine that controls the SDA data line.

Espressif Systems 285 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

e DATA_Shifter which converts the byte data to an outgoing bitstream, or converts an incoming bitstream to
byte data. 12C_RX_LSB_FIRST and 12C_TX_LSB_FIRST can be used for configuring whether the LSB or
MSB is stored or transmitted first.

e SCL_Filter and SDA_Filter: Input noise filter for the 12C_Slave. The filter can be enabled or disabled by
configuring 12C_SCL_FILTER_EN and 12C_SDA_FILTER_EN. The filter can remove line glitches with pulse
width less than 12C_SCL_FILTER_THRES and 12C_SDA_FILTER_THRES ABP clock cycles.

11.3.3 12C Bus Timing

SDA_START_HOLD_TIME
e SCL_LOW_PERIOD
SCL| +— ! | ‘ ‘

SDA_HOLD_TIME SCL_RSTART_SETUP_TIME ~ STOP_SETUP_TIME
: . - - :

- - | e~

/—H
{STOP_HOLD_TIME

| == oL HiGH PeRipD - SCL START,HOLD, TIE
S:DA,HOLD:,T‘IME : : SDA_SAMPLE,_TIME | . | |

SDA |

Figure 11-3. 12C Sequence Chart

Figure 11-3 is an 12C sequence chart. When the 12C controller works in master mode, SCL is an output signal.
In contrast, when the 12C controller works in slave mode, the SCL becomes an input signal. The values assigned
to 12C_SDA_HOLD_REG and 12C_SDA_SAMPLE_REG are still valid in slave mode. Users need to configure the
values of 12C_SDA_HOLD_TIME and 12C_SDA_SAMPLE_TIME, according to the host characteristics, for the 12C
slave to receive data properly. Table 11-1 shows available settings of SCL low and high level cycles when SCL is
configured to direct output mode. The settings determine the SCL output frequency fsq.

Table 11-1. SCL Frequency Configuration

12C_SCL_FILTER_EN | 12C_SCL_FILTER_THRES | SCL_Low_Level_Cycles SCL_High_Level_Cycles
0 Don’t care 12C_SCL_HIGH_PERIOD+7
1 [0,2] 12C_SCL_LOW_PERIOD+1 12C_SCL_HIGH_PERIOD+8
[3,7] 12C_SCL_HIGH_PERIOD+6+I2C_SCL_FILTER_THRES
80 MHz
f scl =

SCL_Low_Level_Cycles + SCL_High_Level_Cycles

According to the 12C protocol, each transmission of data begins with a START condition and ends with a STOP
condition. Data is transmitted by one byte at a time, and each byte has an ACK bit. The receiver informs the
transmitter to continue transmission by pulling down SDA, which indicates an ACK. The receiver can also indicate
it wants to stop further transmission by pulling up the SDA ling, thereby not indicating an ACK.

Figure 11-3 also shows the registers that can configure the START bit, STOP bit, SDA hold time, and SDA sample
time.

Notice: If the I2C pads are configured in open-drain mode, it will take longer for the signal lines to transition from
a low level to a high level. The transition duration is determined together by the pull-up resistor and capacitor. The
output frequency of SCL is relatively low in open-drain mode.

Espressif Systems 286 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

11.3.4 12C cmd Structure

31

13:11 10

9 8 7:0

omdo CMD_DONE op_code ack_value| ack_exp |ack_check_en byte_num
31 13:11 10 9 8 7:0
omd15 CMD_DONE op_code ack_value| ack_exp |ack_check_en byte num

Figure 11-4. Structure of The 12C Command Register

The Command register is active only in 12C master mode, with its internal structure shown in Figure 11-4.

CMD_DONE: The CMD_DONE bit of every command can be read by software to tell if the command has been

handled by hardware.

op_code: op_code is used to indicate the command. The 12C controller supports four commands:

e RSTART: op_code = 0 is the RSTART command to control the transmission of a START or RESTART 12C

condition.

e WRITE: op_code = 1 is the WRITE command for the 12C Master to transmit data.

e READ: op_code = 2 is the READ command for the 12C Master to receive data.

e STOP: op_code = 3 is the STOP command to control the transmission of a STOP 12C condition.

e END: op_code = 4 is the END command for continuous data transmission. When the END command is
given, SCL is temporarily disabled to allow software to reload the command and data registers for subsequent

events before resuming. Transmission will then continue seamlessly.

A complete data transmission process begins with an RSTART command, and ends with a STOP command.

ack_value: When receiving data, this bit is used to indicate whether the receiver will send an ACK after this byte

has been received.

ack_exp: This bit is to set an expected ACK value for the transmitter.

ack_check_en: When transmitting a byte, this bit enables checking the ACK value received against the ack_exp
value. Checking is enabled by 1, while 0 disables it.

byte_num: This register specifies the length of data (in bytes) to be read or written. The maximum length is 255,
while the minimum is 1. When the op_code is RSTART, STOP or END, this value is meaningless.

Espressif Systems

287

ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

11.3.5

12C Master Writes to Slave

Master

cmd

op_code

byte_num

cmdo‘ RSTART

cmd1‘ WRITE ‘ N+1

cmd2‘ STOP ‘

RAM

addr0 (slave_addr<<1| r/w,

addr1

addr2 byte1

addrN

B
byte0 ‘
byte(N-1) ‘

SCL

SDA

Slave

RAM
addr0

byte0

addr1

byte1

addr2

addr(N—1)‘

byte(N-1)

Figure 11-5. 12C Master Writes to Slave with 7-bit Address

In all subsequent figures that illustrate 12C transactions and behavior, both the 12C Master and Slave devices are
assumed to be ESP32 12C peripheral controllers for ease of demonstration.

Figure 11-5 shows the 12C Master writing N bytes of data to an 12C Slave. According to the 12C protocol, the
first byte is the Slave address. As shown in the diagram, the first byte of the RAM unit has been populated with
the Slave’s 7-bit address plus the 1-bit read/write flag. In this case, the flag is zero, indicating a write operation.
The rest of the RAM unit holds N bytes of data ready for transmission. The cmd unit has been populated with the
sequence of commands for the operation.

For the 12C master to begin an operation, the bus must not be busy, i.e. the SCL line must not be pulled low by
another device on the 12C bus. The 12C operation can only begin when the SCL line is released (made high) to
indicate that the 12C bus is free. After the cmd unit and data are prepared, I2C_TRANS_START bitin I2C_CTR_REG
must be set to begin the configured 12C Master operation. The 12C Master then initiates a START condition on the
bus and progresses to the WRITE command which will fetch N+1 bytes from RAM and send them to the Slave.
The first of these bytes is the address byte.

When the transmitted data size exceeds 12C_NONFIFO_TX_THRES, an 12C_TX_SEND_EMPTY_INT interrupt will
be generated. After detecting the interrupt, software can read TXFIFO_END_ADDR in register RXFIFO_ST_REG,
get the last address of the data in the RAM and refresh the old data in the RAM. TXFIFO_END_ADDR will be
refreshed each time interrupt 12C_TX_SEND_EMPTY_INT or 1I2C_TRANS_COMPLETE_INT occurs.

When ack_check_en is set to 1, the Master will check the ACK value each time it sends a data byte. If the ACK
value received does not match ack_exp (the expected ACK value) in the WRITE command, then the Master will
generate an 12C_ACK_ERR_INT interrupt and stop the transmission.

During transmission, when the SCL is high, if the input value and output value of SDA do not match, then the
Master will generate an 12C_ARBITRATION_LOST_INT interrupt. When the transmission is finished, the Master will
generate an 1I2C_TRANS_COMPLETE_INT interrupt.

After detecting the START bit sent from the Master, the Slave will start receiving the address and comparing it
to its own. If the address does not match 12C_SLAVE_ADDR, then the Slave will ignore the rest of the transmis-
sion. If they do match, the Slave will store the rest of the data into RAM in the receiving order. When the data
size exceeds I12C_NONFIFO_RX_THRES, an 12C_RX_REC_FULL_INT interrupt is generated. After detecting the

288
Submit Documentation Feedback

Espressif Systems ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

interrupt, software will get the starting and ending addresses in the RAM by reading RXFIFO_START_ADDR and
RXFIFO_END_ADDR bits in register RXFIFO_ST_REG, and fetch the data for further processing. Register RX-
FIFO_START_ADDR is refreshed only once during each transmission, while RXFIFO_END_ADDR gets refreshed
every time when either 1I2C_RX_REC_FULL_INT or I2C_TRANS_COMPLETE_INT interrupt is generated.

When the END command is not used, the 12C master can transmit up to (14*255-1) bytes of valid data, and the
cmd unit is populated with RSTART + 14 WRITE + 1 STOP.

There are several special cases to be noted:

¢ [f the Master fails to send a STOP bit, because the SDA is pulled low by other devices, then the Master needs
to be reset.

¢ |f the Master fails to send a START bit, because the SDA or SCL is pulled low by other devices, then the
Master needs to be reset. It is recommended that the software uses a timeout period to implement the reset.

¢ [f the SDA is pulled low by the Slave during transmission, the Master can simply release it by sending it nine
SCL clock signals at the most.

It is important to note that the behaviour of another 1I2C master or slave device on the bus may not always be similar
to that of the ESP32 12C peripheral in the master- or slave-mode operation described above. Please consult the
datasheets of the respective 12C devices to ensure proper operation under all bus conditions.

The ESP32 12C controller uses 7-bit addressing by default. However, 10-bit addressing can also be used. In
the master, this is done by sending a second 12C address byte after the first address byte. In the slave, the
I2C_SLAVE_ADDR_10BIT_EN bit in I2C_SLAVE_ADDR_REG can be set to activate a 10-bit addressing mode.
I2C_SLAVE_ADDR is used to configure the 12C Slave address, as per usual. Figure 11-6 shows the equivalent of
12C Master operation writing N-bytes of data to an 12C Slave with a 10-bit address. Since 10-bit Slave addresses
require an extra address byte, both the byte_num field of the WRITE command and the number of total bytes in
RAM increase by one.

Master

emd op_code byte_num

cmdo‘ RSTART ‘

cmd1‘ WRITE ‘ N+2 ‘
cmdQ‘ STOP ‘ ‘ sCL Slave
M addr0 |(slave_addr_first_7bits<<1| r/w)‘ SDA RAM addr0 byte0 ‘
addr1 slave_addr_second_byte ‘ addr1 byte1 ‘
addr2 byteO ‘ addr2 ‘
addr;l-\l.ﬂ) byte(N-1) ‘ addr(N-1) ‘ byte(N-1) ‘

Figure 11-6. 12C Master Writes to Slave with 10-bit Address

When the END command is not used, the 12C master can transmit up to (14*255-2) bytes of valid data to Slave
with 10-bit address.

One way many 12C Slave devices are designed is by exposing a register block containing various settings. The
|2C Master can write one or more of these registers by sending the Slave a register address. The ESP32 12C Slave
controller has hardware support for such a scheme.

Espressif Systems 289 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

Specifically, on the Slave, 12C_FIFO_ADDR_CFG_EN can be set so that the 12C Master can write to a specified
register address inside the 12C Slave memory block. Figure 11-7 shows the Master writing N-bytes of data byte0 ~
byte(N-1) from the RAM unit to register address M (determined by addrM in RAM unit) with the Slave. In this mode,
Slave can receive up to 32 bytes of valid data. When Master needs to transmit extra amount of data, segmented

transmission can be enabled.

Master

cmd

op_code byte_num
cme‘ RSTART ‘
cmd1 ‘ WRITE ‘ N+2 ‘

cmd2‘ STOP ‘

RAM

addr(N+1)

addr0

addr1 M

addr2 byte0

(slave_addr<<1| r/w) ‘

byte(N-1)

SCL

SDA

Slave
RAM
addr0 ‘
ac;;i.rM byte0 ‘
addr(M+1) byte1
addr(N+M-1 byte(N-1) ‘

Figure 11-7. 12C Master Writes to addrM in RAM of Slave with 7-bit Address

If the data size exceeds the capacity of a 14-byte read/write cmd, the END command can be called to enable
segmented transmission. Figure 11-8 shows the Master writing data to the Slave, in three segments. The first
segment shows the configuration of the Master’'s commands and the preparation of data in the RAM unit. When the
I2C_TRANS_START bit is enabled, the Master starts transmission. After executing the END command, the Master
will turn off the SCL clock and pull the SCL low to reserve the bus and prevent any other device from transacting
on the bus. The controller will generate an 12C_END_DETECT_INT interrupt to notify the software.

Espressif Systems

290

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

Figure 11-8. Master Writes to Slave with 7-bit Address in Three Segments

After detecting an 12C_END_DETECT_INT interrupt, the software can refresh the contents of the cmd and RAM
blocks, as shown in the second segment. Subsequently, it should clear the 12C_END_DETECT_INT interrupt and
resume the transaction by setting the I2C_TRANS_START bit. To stop the transaction, it should configure the cmd,
as the third segment shows, and enable the I2C_TRANS_START bit to generate a STOP bit, after detecting the

Master

cmd op_code

cmd0| RSTART

byte_num

12C_NONFIFO_RX_THRES
12C_RXFIFO_START_ADDR

12C_RXFIFO_END_ADDR
cmd1| WRITE N+1
SCL Slave
>
RAM RAM
addr0 | (slave_addr<<1| r/w) SDA addr0 byteO
-t -
addr1 byted addrt bytel
addr2 byte1 addr2
addrN byte(N-1) addr(N-1)] byte(N-1)
Segment0
Segmenti
Master
op_code byte_num
cmd
cmdo| WRITE M scL Slave
>
o SDA addr(N-1) Byte(N-1)
-4 -
addrN byteN
RAM. ddro byteN
addr2
addr1 byte(N+1)
addr2 byte(N+2) addr(M+N-1) byte(M+N-1)
addrM byte(M+N-1)
ment2
Master Segme
op_code byte_num
cmd

I2C_END_DETECT_INT interrupt.

Please note that the other masters on the bus will be starved of bus time between two segments. The bus is only

released after a STOP signal is sent.

Note: When there are more than three segments, the address of an END command in the cmd should not be

altered into another command by the next segment.

Espressif Systems

291

Submit Documentation Feedback

ESP32 TRM (Version 5.0)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

11.3.6 Master Reads from Slave

Master

cmd op_code byte_num

cmd0| RSTART

cmd1 WRITE

cmd2| READ N
SCL Slave

[y

cmd3 READ

RAM
g SPA addr0 byted

cmd4 STOP

y
A

addr1 byte1

RAM
1 ddr<<1| r/w) byte0
addr0 |(slave_addr<<1| r/w) byte! addriN-1) byte(N-1)

addri byte1

addr2 byte2

addr(N-1) byte(N-1)

Figure 11-9. Master Reads from Slave with 7-bit Address

Figure 11-9 shows the Master reading N-bytes of data from an Slave with a 7-bit address. At first, the Master
needs to send the address of the Slave, so cmd1 is a WRITE command. The byte that this command sends is
the slave address plus the R/W flag, which in this case is 1 and, therefore, indicates that this is going to be a
read operation. The Slave starts to send data to the Master if the addresses match. The Master will return ACK,
according to the ack_value in the READ command, upon receiving every byte. As can be seen from Figure 11-9,
READ is divided into two segments. The Master replies ACK to N-1 bytes in crnd2 and does not reply ACK to the
single byte READ command in cmd3, i.e., the last transmitted data. Users can configure it as they wish.

When storing the received data, Master will start from the first address in RAM. ByteO (Slave address + 1-bit R/W
marker bit) will be overwritten.

When the END command is not used, the Master can receive up to (13*255) bytes of valid data. The cmd unit is
populated with RSTART + 1 WRITE + 13 READ + 1 STOP.

Figure 11-10 shows the Master reading data from a slave with a 10-bit address. This mode can be enabled
by setting 12C_SLAVE_ADDR_10BIT_EN bit and preparing data to be sent in the slave RAM. In the Master, two
bytes of RAM are used for a 10-bit address. Finally, the 12C _TRANS_START bit must be set to enable one
transaction.

Espressif Systems 292 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

Master
cmd

code byte_num

cmd0| RSTART

cmd1 WRITE

cmd2 READ N.

II(.>
I_.‘ Ir\) I

cmd3| READ

cmd4 STOP

SCL Slave

M - - RAM
addr0 | (slave_addr first_7bits<<1| r/w) byteO SDA addr0 byte0

addr1 slave_addr_second_byte bytel addr1 bytel

addr2 byte2 addr2

Figure 11-10. Master Reads from Slave with 10-bit Address

Figure 11-11 shows the Master reading data from a specified address in the Slave. This mode can be enabled
by setting 12C_FIFO_ADDR_CFG_EN and preparing the data to be read by the master in the Slave RAM block.
Subsequently, the address of the Slave and the address of the specified register (that is, M) have to be determined
by the master. Finally, the I2C_TRANS_START bit must be set in the Master to initiate the read operation, following
which the Slave will fetch N bytes of data from RAM and send them to the Master.

Master
cmd

op_code byte_num

cmd0| RSTART

cmd1 WRITE

cmd2] READ N

I—A I Im I

cmd3 READ
SCL Slave
>
cmd4 STOP
RAM
4 SDA addr0
addrM byte0
RAM
slave_addr<<1| r/w) byteO
addr0 |(slave_addr<<1| r/w) bytel addr(M+1) byte1
addrt |M byte1
addr(N+M-1 byte(N-1)
addr2 byte2

Figure 11-11. Master Reads N Bytes of Data from addrM in Slave with 7-bit Address

Figure 11-12 shows the Master reading N+M bytes of data in three segments from the Slave. The first segment
shows the configuration of the cmd and the preparation of data in the Slave RAM. When the I2C_TRANS_START
bit is enabled, the Master starts the operation. The Master will refresh the cmd after executing the END com-
mand. It will clear the I2C_END_DETECT_INT interrupt, set the I2C_TRANS_START bit and resume the transac-
tion. To stop the transaction, the Master will configure the cmd, as the third segment shows, after detecting the
I2C_END_DETECT_INT interrupt. After setting the I2C_TRANS_START bit, Master will send a STOP bit to stop
the transaction.

Espressif Systems 293 ESP32 TRM (Version 5.0)
Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11

12C Controller (12C)

12C_NONFIFO_RX_THRES
Master l«— 12C_RXFIFO_START_ADDR
12G_RXFIFO_END_ADDR
d byt
cmd op-coce Yieum 12G_NONFIFO_TX_THRES
omdo| RSTART - 12C_TXFIFO_START_ADDR
12C_TXFIFO_END_ADDR
SCL | Slave
RAM
g SDA addr0 byte0
- >
RAM addr0 | (slave_addr<<1| r/w) byteO addr1 byte1
addr1 byte1 addr2
addr2 byte2 addr(N-1) byte(N-1)
addr(N-1) byte(N-1)
Segment0
Segment1
Master
cmd op_code byte_num
cmdo| READ SCL Slave
4 SDA addr(N-1) Byte(N-1)
-y >
END
cmd2 addrN byteN
addr2
RAM o ddrn byteN
addr(M+N-1) byte(M+N-1)
addr(N+1) byte(N+1)
addr(N+2) byte(N+2)
addr(M+N-1) byte(M+N-1)
Master Segment2
cmd op_code byte_num
omdo| STOP M-1

Figure 11-12. Master Reads from Slave with 7-bit Address in Three Segments

11.3.7 Interrupts

I2C_TX_SEND_EMPTY_INT: Triggered when the Master or Slave has sent nonfifo_tx_thres bytes of data.
12C_RX_REC_FULL_INT: Triggered when the Master or Slave has received nonfifo_rx_thres bytes of data.

12C_ACK_ERR_INT: Triggered when the Master receives an ACK that is not as expected, or when the Slave
receives an ACK whose value is 1.

I2C_TRANS_START_INT: Triggered when the Master or Slave sends the START bit.
12C_TIME_OUT_INT: Triggered when the SCL stays high or low for more than 12C_TIME_OUT clocks.
I2C_TRANS_COMPLETE_INT: Triggered when the Master or Slave detects a STOP bit.
I2C_MASTER_TRAN_COMP_INT: Triggered when the Master sends or receives a byte.

I2C_ARBITRATION_LOST_INT: Triggered when the Master’s SCL is high, while the output value and input
value of the SDA do not match.

I2C_END_DETECT_INT: Triggered when the Master deals with the END command.

Espressif Systems 294 ESP32 TRM (Version 5.0)

Submit Documentation Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=5.0

11 12C Controller (12C)

11.4 Register Summary
